

Spectron: Target Speaker Extraction using Conditional Transformers

Tathagata Bandyopadhyay

Technische Universität München

Department of Informatics

Visual Computing Lab

Munich, 27 May 2022

Introduction

The Cocktail Party Problem

The problem:

- <u>Many people</u> talking simultaneously
- You want to listen to just one of them

Conventional Solutions:

- Multi-channel blind source separation
- Single-Channel blind source separation

Source: elixirofknowledge.com

ПΠ

Informed is often better than Blind

Blind Source Separation:

- number of speakers need to be known
- Output channel assignment ambiguity
- Permutation Invariant Loss is not scalable

Often we know whom to look for:

- Personal Assistants
- Voice Commands
- Target Speech Recognition

Source: medium.com

Target Speaker Extraction

Method

ТЛП

Pipeline

Dual Path Transformer Backbone

¹Dual Path Transformer Flowchart Source: Chen, Jingjing, Qirong Mao, and Dong Liu. "Dual-path transformer network: Direct context-aware modeling for end-to-end monaural speech separation." *arXiv preprint arXiv*:2007.13975 (2020).

Speaker Encoder

²LSTM Image Source: Heigold, Georg, et al. "End-to-end text-dependent speaker verification." 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2016.

³Speaker Encoder architecture source: Wan, Li, et al. "Generalized end-to-end loss for speaker verification." 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2018.

Waveform Reconstruction Quality Loss (WRQL)

Speker Embedding Consistancy Loss (SECL)

Inverse Consistancy Loss (ICL)

Results

Dataset

⁴Speaker https://github.com/JorisCos/LibriMix

⁵https://github.com/google/speaker-id/tree/master/publications/VoiceFilter/dataset/LibriSpeech

⁶Wang, Quan, et al. "Voicefilter: Targeted voice separation by speaker-conditioned spectrogram masking." arXiv preprint arXiv:1810.04826 (2018).

ТЛП

Experimental Setup

Environment:

- os: Ubuntu 16.04.7
- gpu: NVIDIA GTX1080Ti with CUDA 11.3
- python: 3.9.7
- pyTorch: 1.10.0

HyperParams:

- batch_size = 4
- learning_rate = 0.0001
- weight_decay = 1e-7
- no_of_attention_heads = 8
- optimizer: Adam
- reference_speech_sample_rate = 16 KHz
- mixed input and GT sample rate = 8 KHz
- audio_segment_length = 3 s

Gradual Development of the Model: Ablation

Model Variant	SDRi (dB)	SI-SNRi (dB)
Baseline*	11.13	10.42
Baseline+ICL	10.92	10.07
Baseline+ICL+SECL	10.95	10.15
Baseline+ICL+SECL+JointTraining	12.41	11.72
Spectron (with "DPTNet" backbone)	13.94	13.23

*Baseline model refers to a system with fixed pretrained Speaker Encoder (from GE2E paper⁷) and "ConvTasnet"⁸ backbone trained only with negative SI-SNR as WRQL

⁷Speaker Encoder architecture source: Wan, Li, et al. "Generalized end-to-end loss for speaker verification." 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2018.

⁸Luo, Yi, and Nima Mesgarani. "Conv-tasnet: Surpassing ideal time–frequency magnitude masking for speech separation." IEEE/ACM transactions on audio, speech, and language processing 27.8 (2019): 1256-1266..

Spectron vs. State-of-the-Arts

Model	SDRi (dB)	SI-SNRi (dB)
VoiceFilter ⁹	7.8	_
AtssNet ¹⁰	9.3	-
X-Tasnet ¹¹	13.8	12.7
X-Tasnet with LoD ¹¹	14.7	13.8
Spectron (ours)	13.9	12.8

⁹Wang, Quan, et al. "Voicefilter: Targeted voice separation by speaker-conditioned spectrogram masking." arXiv preprint arXiv:1810.04826 (2018).

¹⁰Li, Tingle, et al. "Atss-net: Target speaker separation via attention-based neural network." arXiv preprint arXiv:2005.09200 (2020).

¹¹Zhang, Zining, Bingsheng He, and Zhenjie Zhang. "X-tasnet: Robust and accurate time-domain speaker extraction network." arXiv preprint arXiv:2010.12766 (2020).

Spectron vs. Voice Filter^{*}: Qualitative Comparison

*Wang, Quan, et al. "Voicefilter: Targeted voice separation by speaker-conditioned spectrogram masking." arXiv preprint arXiv:1810.04826 (2018).

Varrying Number of Speech Sources

Separately Trained		Trained together in Mixed Batches			
#Speakers	SDRi (dB)	SI-SNRi (dB)	#Speakers	SDRi (dB)	SI-SNRi (dB)
2	13.94	13.23	2	13.45	12.60
3	10.76	9.89	3	11.40	10.29
5	5.62	4.07	5	8.25	6.71

Live Demo!

Conclusion

Conclusion and Future Scope

In summary:

- A Transformer based Speaker extraction Framework
- Two additional novel objective functions
- Joint training strategy, along with above two points, improves baseline
- For n-mix case, mixed batch training is better than separate training

In future:

- Transformer based Speaker Encoder
- Speaker Presence Invariant Training
- Down stream applications

ТШΠ

Thank you!

Any questions?

