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Introduction
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The 3D Head Reconstruction Problem

Aditional requirements:

• Generalizable identity

• Controllable expression

Free-form reconstruction:

• Highly under-constrained

• Difficult to parameterize

• Noisy point cloud
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Leveraging Common Head Structure

Human Head / Face:

• Common underlying geometry

• Identity / expression specific deformation

• Utilize this constraint as strong regularizer
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Parametric Head Model

3D Head Scans Learnt Representation Inference / Model-fitting

expression

identity

model training
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Related Work
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Related Work: 3D Representation

+ Simple

+ High volumetric details

- High memory usage

+ Direct from 3D scan

+ Memory efficient

- No surface / topology

+ Graphics ready

+ Supports textures

- Hard to modify

+ Infinite resolution

+ Smooth surfaces

- Hard to define
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Related Work: Implicit 3D Representation

Occupancy Networks DeepSDF

EG3D (tri-plane)NeRF
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Related Work: Parametric Head / Face Models

Blanz & Vetter 1999 FLAME
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NPHM

+ Simple

+ Highly regularized

- Fixed topology

- Less expressive

+ Highly expressive

+ More surface detail

- Less regularized

- Can overfit noise
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Method
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Modeling Identity

: set of 3D point samples on the surface

: ground truth 3D surface normal at X

: number of camera views

: ground truth 2D normal map at view v

: diff. rendered 2D normal map at view v
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Modeling Identity: Differentiable Volume Rendering

SDF(s) to density(σ):

NeRF integration:
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Modeling Identity: 2D Adversarial Objectives

: differentiable volume renderer

: rendering resolution in pixels

: viewing direction

: ground truth 2D normal map

: diff. rendered 2D normal map

: camera intrinsics

: camera pose / extrinsics
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Modeling Expression as Forward Deformation

: neutral pose face points in registered mesh

: local forward deformation / displacement

: correspondence loss to model deformation

: deformation penalty for non-face regions

: latent regularizer for expression code
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Experiments

&

Results
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Dataset, Baselines and Evaluation Metrics

Dataset:

• NPHM1 3D face scans

• 255 subjects, ~21 expression / subject 

• Roughly 5200 scans

• Registered in FLAME2 template

Baselines:

• FLAME2 (linear, PCA based)

• NPM3 (neural, global MLP)

• NPHM1 (neural, ensemble of local MLPs)

1Giebenhain, Simon, et al. "Learning neural parametric head models." Proceedings of the IEEE/CVF Conference on Computer 

Vision and Pattern Recognition. 2023.
2Li, Tianye, et al. "Learning a model of facial shape and expression from 4D scans." ACM Trans. Graph. 36.6 (2017): 194-1.
3Palafox, Pablo, et al. "Npms: Neural parametric models for 3d deformable shapes." Proceedings of the IEEE/CVF International 

Conference on Computer Vision. 2021.

Evaluation metrics:

• Chamfer-L1: point cloud similarity

• Normal Consistency (N.C.): better surface reconstruction (orientation) 

• F-Sore@5 mm: accuracy and completeness

• All metrics are computed with 2.5M point samples 
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Model Summary Comparison

Giebenhain, Simon, et al. "Learning neural parametric head models." Proceedings of the IEEE/CVF Conference on Computer 

Vision and Pattern Recognition. 2023.

Palafox, Pablo, et al. "Npms: Neural parametric models for 3d deformable shapes." Proceedings of the IEEE/CVF International 

Conference on Computer Vision. 2021.

NPM NPHM Ours

Model size (Mio.) 7.349 / 7.351 3.014 / 1.362 7.337 / 7.351

3D representation Global MLP Local MLPs Tri-Plane

Regularizer eikonal

eikonal, 

symmetric 

anchors 

eikonal, 

adversarial 

loss 

Mesh extraction time 

at res 256 (Sec.)
18.319 33.119 03.717
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Identity Fitting: Qualitative Results
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Identity Fitting: Quantitative Results
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Identity Interpolation

shape 1 shape 2
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Expression Fitting: Qualitative Results
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Expression Fitting: Quantitative Results
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Expression Interpolation

expression 1 expression 2
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Expression Transfer
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Ablation study: Qualitative

(MLP baseline) (tri-plane 

+ 3D loss)

(tri-plane 

+ 2D loss

+ regularization)

(tri-plane 

+ 3D loss

+ regularization)

(tri-plane 

+ 2D loss

+ 3D loss  

+ regularization)
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Ablation study: Quantitative
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Aditional ablation: Additive Gaussian Noise

GT Scan
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Aditional ablation: Sparse Point Colud
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Conclusion
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Conclusion and Future Scope

In summary:

• A Parametric Head Model with adversarial loss

• Tri-plane representation capture more details and faster to infer

• Adversarial regularization helps to avoid unwanted artifacts

Limitation:

• Per-pixel ray shooting is inefficient

• Deformation model is not adversarially constrained

In future:

• Add GAN loss to deformation model as well

• Efficient sampling and ray shooting for vol rendering

• Use diffusion approach instead of GAN loss
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Thank you!

Any questions?
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