ПΠ

Learning Neural Parametric Head Models with 2D Adversarial Objectives

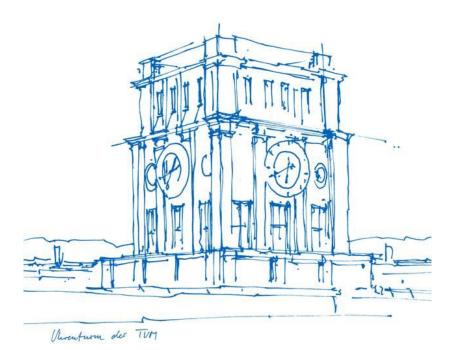
Tathagata Bandyopadhyay

Technische Universität München

Department of Informatics

Visual Computing Lab

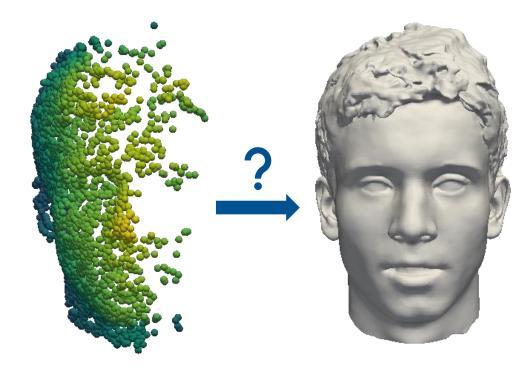
Munich, 22 March 2024



Introduction

ТЛП

The 3D Head Reconstruction Problem



Aditional requirements:

- Generalizable identity
- Controllable expression

Free-form reconstruction:

- Highly under-constrained
- Difficult to parameterize
- Noisy point cloud

ТЛП

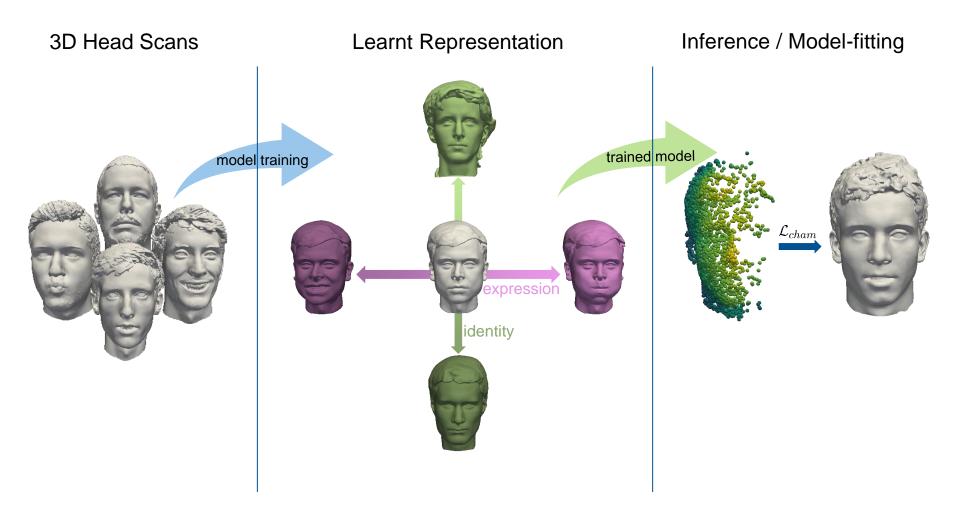
Leveraging Common Head Structure



Human Head / Face:

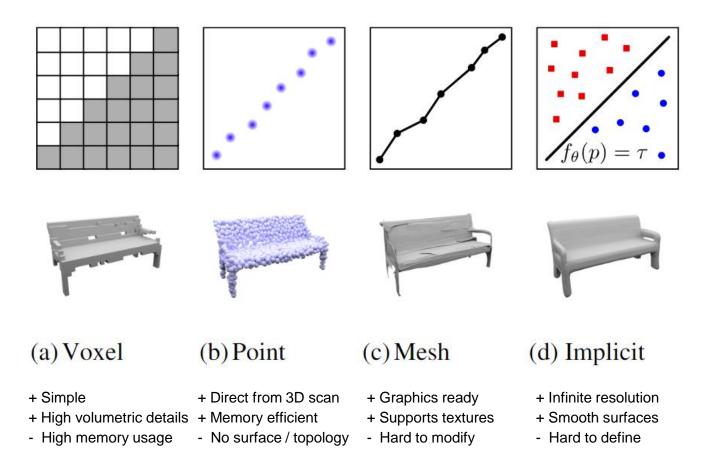
- Common underlying geometry
- Identity / expression specific deformation
- Utilize this constraint as strong regularizer

Parametric Head Model

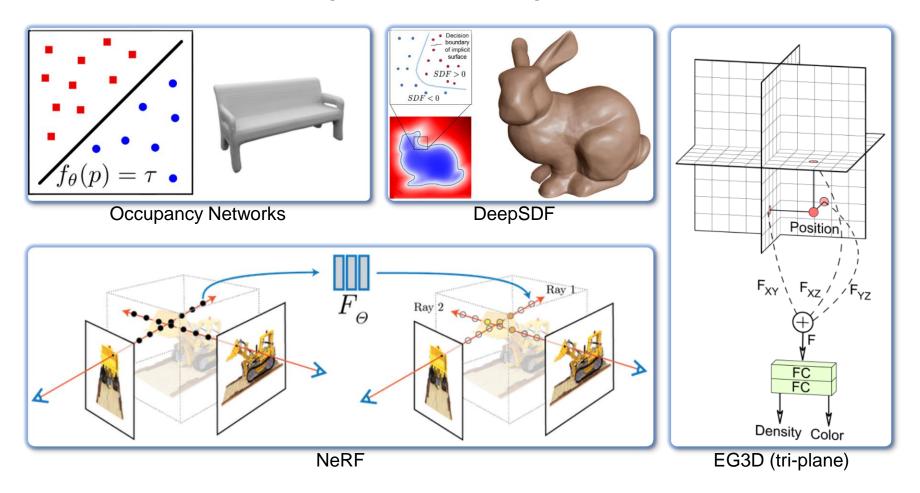


Related Work

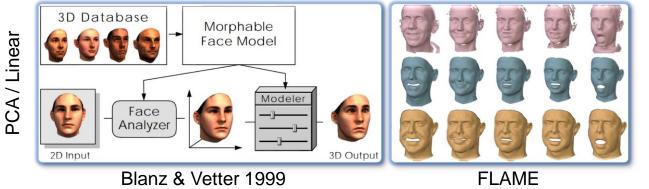
Related Work: 3D Representation



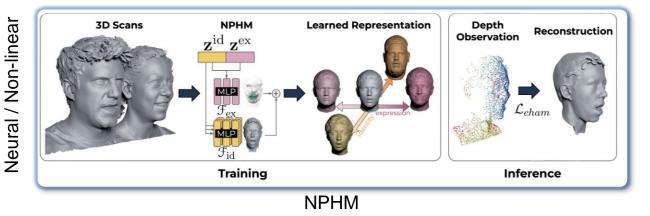
Related Work: Implicit 3D Representation



Related Work: Parametric Head / Face Models



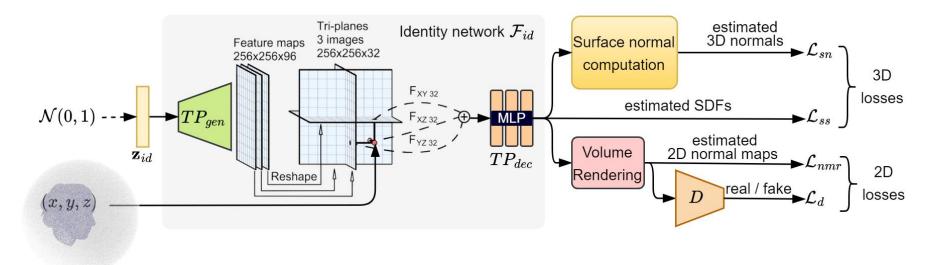
- + Simple
- + Highly regularized
- Fixed topology
- Less expressive



- + Highly expressive
- + More surface detail
- Less regularized
- Can overfit noise

Method

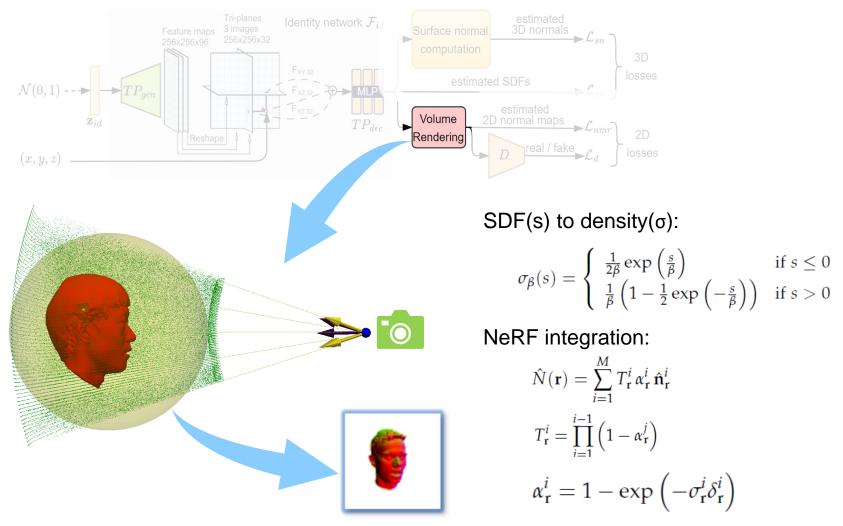
Modeling Identity



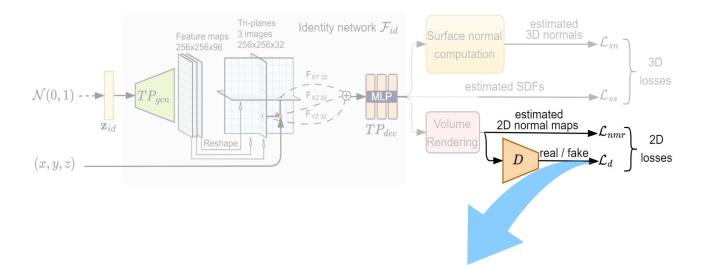
$$\begin{split} \mathcal{L}_{ss} &:= \sum_{\mathbf{x} \in \delta \mathbf{X}} |\mathcal{F}_{\mathbf{id}}(\mathbf{x}, \mathbf{z}_{id})| \\ \mathcal{L}_{sn} &:= \sum_{\mathbf{x} \in \delta \mathbf{X}} \left(1 - \langle \nabla \mathcal{F}_{\mathbf{id}}(\mathbf{x}, \mathbf{z}_{id}), n_{id}(\mathbf{x}) \rangle \right) \\ \mathcal{L}_{nmr} &:= \sum_{v=1}^{M} ||\hat{N}_{id}^{(v)} - N_{id}^{(v)}||_{1} \end{split}$$

$$\begin{split} \delta \mathbf{X} &: \text{set of 3D point samples on the surface} \\ n_{id}(\mathbf{x}) &: \text{ground truth 3D surface normal at } \mathbf{X} \\ M &: \text{number of camera views} \\ N_{id}^{(v)} &: \text{ground truth 2D normal map at view v} \\ \hat{N}_{id}^{(v)} &: \text{diff. rendered 2D normal map at view v} \end{split}$$

Modeling Identity: Differentiable Volume Rendering



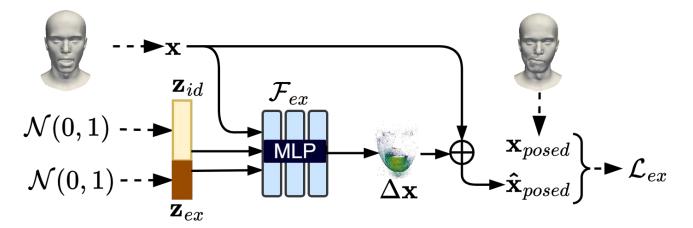
Modeling Identity: 2D Adversarial Objectives



$$\begin{split} \mathcal{L}_{\mathbf{d}}(D;G) &:= \mathbb{E}_{(\mathbf{z}_{id},v)} \left[f(D(G(\mathbf{z}_{id},v))) \right] + \mathbb{E}_{(N_{id}^{(v)})} \left[f(-D(N_{id}^{(v)})) \right] + \lambda \mathcal{L}_{gp} \\ \mathcal{L}_{g}(G;D) &:= \mathbb{E}_{(\mathbf{z}_{id},v)} \left[f(-D(G(\mathbf{z}_{id},v))) \right] \\ \mathcal{L}_{gp} &:= \mathbb{E}_{(N_{id}^{(v)})} \left[|\nabla D(N_{id}^{(v)})|^{2} \right] \\ f(u) &:= \log(1 + \exp(u)) \\ G(\mathbf{z}_{id},v) &:= \hat{N}_{id}^{(v)} = \mathcal{R}(\mathcal{F}_{\mathbf{id}}(\mathbf{z}_{id}), \mathbf{K}^{(v)}, \mathbf{Rt}^{(v)}, res) \end{split}$$

 $\begin{array}{l} \mathcal{R}: \text{differentiable volume renderer} \\ res: rendering resolution in pixels \\ \mathcal{O}: \text{viewing direction} \\ \mathbf{K}: \text{camera intrinsics} \\ \mathbf{Rt}: \text{camera pose} / \text{extrinsics} \\ \mathbf{N}_{id}^{(v)}: \text{ground truth 2D normal map} \\ \hat{N}_{id}^{(v)}: \text{diff. rendered 2D normal map} \\ \end{array}$

Modeling Expression as Forward Deformation



 $\mathcal{L}_{c} := \sum_{\mathbf{x} \in \mathbf{X}} \left((\mathbf{x} + \Delta \mathbf{x}) - \mathbf{x}_{posed} \right)^{2}$ $\Delta \mathbf{x} := \mathcal{F}_{ex}(\mathbf{x}, \mathbf{z}_{ex}, \mathbf{z}_{id})$ $\mathcal{L}_{dp} := \sum_{\mathbf{x} \notin \mathbf{X}} ||\mathcal{F}_{ex}(\mathbf{x}, \mathbf{z}_{ex}, \mathbf{z}_{id})||_{2}^{2}$ $\mathcal{L}_{r} := ||\mathbf{z}_{ex}||_{2}^{2}$

 \mathbf{X} : neutral pose face points in registered mesh $\Delta \mathbf{x}$: local forward deformation / displacement \mathcal{L}_c : correspondence loss to model deformation \mathcal{L}_{dp} : deformation penalty for non-face regions \mathcal{L}_r : latent regularizer for expression code

Experiments & Results

Dataset, Baselines and Evaluation Metrics

Dataset:

- NPHM¹ 3D face scans
- 255 subjects, ~21 expression / subject
- Roughly 5200 scans
- Registered in FLAME² template

Baselines:

- FLAME² (linear, PCA based)
- NPM³ (neural, global MLP)
- NPHM¹ (neural, ensemble of local MLPs)

Evaluation metrics:

- Chamfer-L₁: point cloud similarity +
- Normal Consistency (N.C.): better surface reconstruction (orientation) *
- F-Sore@5 mm: accuracy and completeness *
- All metrics are computed with 2.5M point samples

¹Giebenhain, Simon, et al. "Learning neural parametric head models." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023.

²Li, Tianye, et al. "Learning a model of facial shape and expression from 4D scans." ACM Trans. Graph. 36.6 (2017): 194-1. ³Palafox, Pablo, et al. "Npms: Neural parametric models for 3d deformable shapes." Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021.

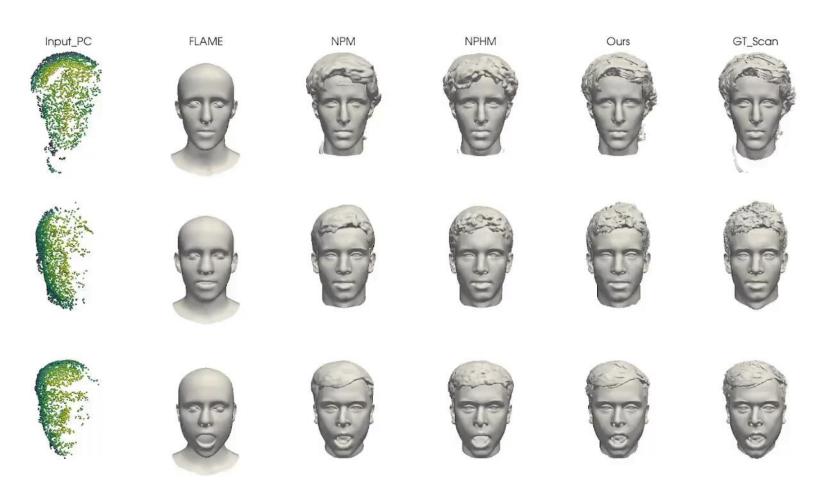
Model Summary Comparison

	NPM	NPHM	Ours
Model size (Mio.)	7.349 / 7.351	3.014 / 1.362	7.337 / 7.351
3D representation	Global MLP	Local MLPs	Tri-Plane
Regularizer	eikonal	eikonal, symmetric anchors	eikonal, adversarial loss
Mesh extraction time at res 256 (Sec.)	18,319		03.717

Giebenhain, Simon, et al. "Learning neural parametric head models." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023.

Palafox, Pablo, et al. "Npms: Neural parametric models for 3d deformable shapes." Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021.

Identity Fitting: Qualitative Results



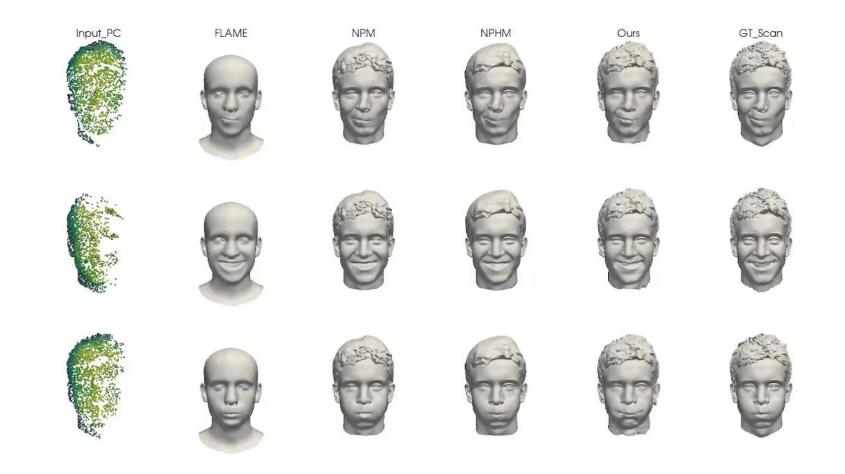
Identity Fitting: Quantitative Results

Method	L_1 -Chamfer \downarrow		N.C. ↑		F-Score @ 1 mm ↑	
	face	head	face	head	face	head
FLAME	0.643	5.829	0.975	0.894	0.998	0.636
NPM	0.451	2.037	0.991	0.897	0.999	0.901
NPHM	0.320	1.360	0.994	0.924	1.000	0.957
Ours	0.359	0.820	0.993	0.948	1.000	0.989

Identity Interpolation

shape 2

Expression Fitting: Qualitative Results



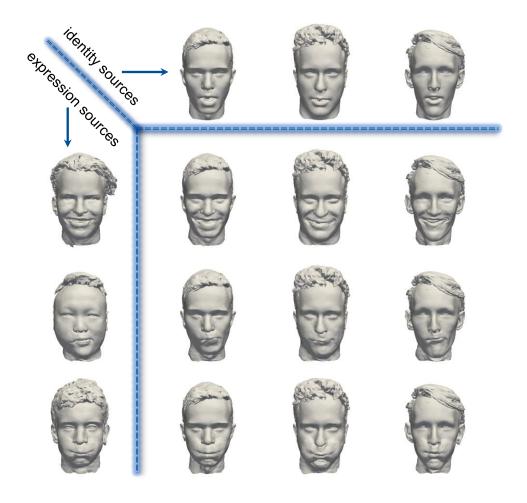
Expression Fitting: Quantitative Results

Method	L_1 -Chamfer \downarrow		N.C. ↑		F-Score @ 1 mm ↑	
	face	head	face	head	face	head
FLAME	0.769	6.016	0.972	0.882	0.999	0.636
NPM	0.416	1.659	0.988	0.888	1.000	0.934
NPHM	0.368	1.313	0.991	0.909	1.000	0.965
Ours	0.650	1.179	0.981	0.915	0.998	0.984

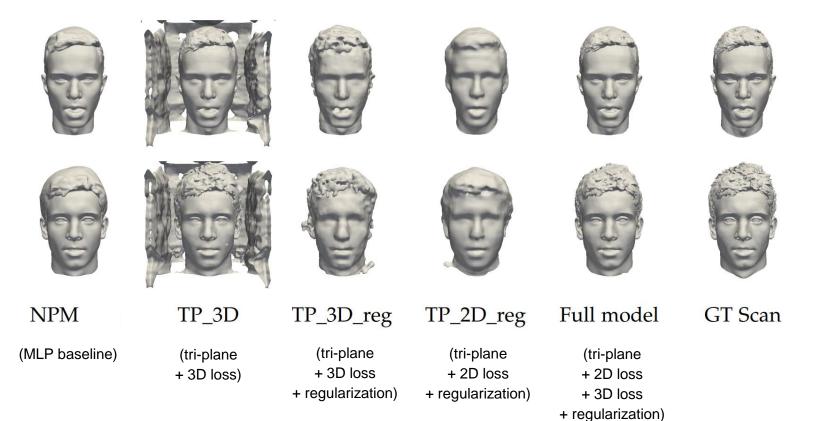
Expression Interpolation

expression 1

Expression Transfer



Ablation study: Qualitative

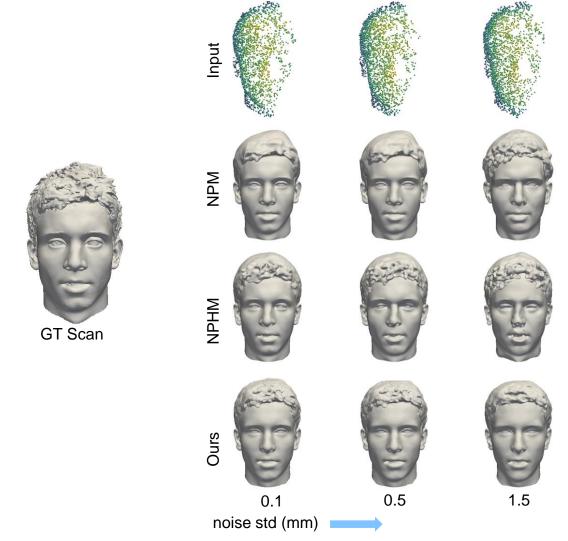


Ablation study: Quantitative

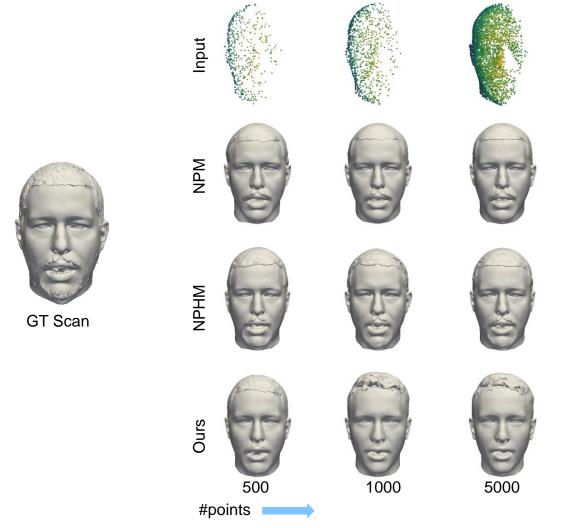
Method	L_1 -Chamfer \downarrow	N.C. ↑	F-Score @ 1 mm ↑
NPM	1.361	0.924	0.957
TP_3D	17.226	0.869	0.642
TP_3D_reg	3.150	0.857	0.791
TP_2D_reg	3.785	0.866	0.747
Full model	0.819	0.948	0.989

ТЛП

Aditional ablation: Additive Gaussian Noise



Aditional ablation: Sparse Point Colud



Conclusion

Conclusion and Future Scope

In summary:

- A Parametric Head Model with adversarial loss
- Tri-plane representation capture more details and faster to infer
- Adversarial regularization helps to avoid unwanted artifacts Limitation:
 - Per-pixel ray shooting is inefficient
- Deformation model is not adversarially constrained In future:
 - Add GAN loss to deformation model as well
 - Efficient sampling and ray shooting for vol rendering
 - Use diffusion approach instead of GAN loss

ТШΠ

Thank you!

Any questions?

