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Abstract

Modeling human head is a long standing problem in computer graphics and has got
many practical applications in computer games, animation and film industry. Paramet-
ric head models try to approach this problem by providing low dimensional and ideally
disentangled control parameters to change the identity and expression of a human face
without requiring to explicitly model each face and expression combination. While a
simple PCA based parametric model can be easily obtained directly from the 3D face
scans, such model is restricted to fixed template mesh topology and thus limited in
capacity to represent high frequency details of any real face due to inherent linearity of
the model. Recent progress in neural networks and neural implicit surface representa-
tion has enabled the computers to learn more complex parametric head models with
better generalization capability. However, they still struggle to fit sparse and possi-
bly noisy point-clouds or depth maps of real faces due to under constrained latent space.

In this thesis, we propose to learn a neural parametric head model which utilizes
2D adversarial objective on multi-view differentiable renderings of 2D normal maps
along side existing 3D point-cloud based objectives to properly constrain the latent
spaces, thus enabling it to fit noisy point-clouds of real face scans. Additionally, we
use tri-plane based hybrid neural surface representation to leverage its 3D aware rich
features for representing high-frequency details and faster convergence. We empirically
show that the proposed model not only out performs most of the existing models in
reconstruction and fitting, but also is more robust to scanning noise. To our knowledge,
we are the first to use tri-plane based hybrid surface representation in the context of
neural parametric head models.
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1 Introduction

Human face or head is one of the most important aspects of human visual perception
of identity and expression. Thus, in this digital age, 3D computer modeling of human
head has found a wide range of interesting applications starting from computer games,
animation movies, virtual reality, digital avatars and so on. Manually sculpting such
digital heads requires tremendous amount of time and effort by skilled professionals
and thus it is not a scalable and generalizable solution. To this end, modern 3D head
scanning techniques [1] using depth cameras or 3D laser scanners have come to the
rescue and thus 3D reconstruction of human heads from sparse inputs like point clouds
or depth maps is the key to the scalable approach of computerized human head model-
ing. However, general surface reconstruction from point clouds [2, 3] without any prior
is an extremely ill-posed and under constrained problem especially in the context of
human face or head.

Human heads have a common structure, for instance the relative positioning of the
hair, eyes, nose, mouth, ears and so on. Parametric head or face models in general
leverage this idea as strong prior and conceptually model each individual face as some
kind of deviation from an average face in a low dimensional parametric space. To this
end, Blendshape [4, 5] and 3D Morphable Models (3DMM) [6–11] have demonstrated
reasonably well performance to provide compact 3D face representation from sparse
point clouds while regularizing out noise.

Most simplistically a 3DMM can be obtained using Principal Component Analy-
sis (PCA) based low rank approximation of the underlying 3D mesh geometry over
a fixed template mesh [6–8, 12]. In this approach, a template face model with fixed
topology (i.e. fixed number of vertices and faces) is non-rigidly registered to each
3D scans. On these registered templates, a dimensionality reduction technique like
PCA can be used to compute a 3DMM. Such PCA based models can handle noisy
sparse input well due to their strong regularizing property. However, inherent linearity
of such models and their reliance on a fixed topology template, makes such 3DMMs
extremely dependent on the quality of scans and the quality of non-rigid registrations
and ultimately inhibits them in capacity to represent high frequency surface details
and diverse hair styles.
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1 Introduction

Advent of deep neural networks enabled the formulation of more complex non-linear
3DMMs [9–11, 13–16], commonly and collectively referred as Neural Parametric Face
Models (NPFM), with better representation and generalization capabilities. Usually,
such solutions [14–16] use an Multi Layer Perceptron (MLP) based deep implicit surface
representations in the form of Signed Distance Field (SDF) [17] or Occupancy Field (OF)
[18] and learn disentangled latent codes for identity (shape) and expression spaces to
achieve the capability of independent control over identity and expression manipulation.
To this end, some of such approaches [14, 15] model both individual identities and
individual expressions as a deviation or deformation field over an average template
identity and a neutral (canonical) expression respectively. Some other approaches [16,
19, 20] model the identity directly with the identity space latent codes without requiring
the concept of average template identity, but model the individual expressions as a
forward or backward deformation field over the neutral (canonical) expression. Some
of them [20] also employ ensemble of multiple local MLPs instead of one single global
MLP for the implicit surface representation.

NPFMs, as outlined above, are extremely good at representing diverse face and hair
styles and high frequency surface details due to high non-linearity of the neural net-
works, infinite resolution surface representation capability of the implicit SDF or OF
networks and no reliance on a fixed topology template mesh. However, such powerful
expressive capacity comes at the cost of lower inherent regularization property as such
models can easily overfit to noise present in the input point clouds or depth maps,
thus producing noisy reconstructions in the inference time. To mitigate this issue, such
models can be explicitly regularized by adding some normal consistency or smoothness
terms in the objective function, but such explicit regularization is prone to produce over
smooth results compromising on the high frequency details due to lack of adaptive
discernability between surface vs noise.

Generative Adversarial Network (GAN)s [21, 22] are excellent at learning complex
distributions of real data as it leverages another neural-network namely discriminator,
which classifies real vs generated samples, as an implicit loss function instead of using
explicit reconstruction and regularization based loss functions. Such capability of
GANs can be utilized in different hybrid generative contexts even alongside explicit
reconstruction losses to implicitly regularize the latent spaces to make the model im-
mune to input noise without compromising with high frequency details in the data.

In this thesis, we propose a parametric head model which uses 2D GAN loss on
the multi-view differentiable renderings of normal maps along side the existing 3D

2



1 Introduction

reconstruction losses to constrain the latent spaces to make the model robust to noisy
inputs. We leverage a tri-plane based powerful hybrid surface representation [23,
24] to model the human heads and use a forward deformation field over the open
mouth neutral (canonical) expression to model the individual expressions. To this end,
a Convolutional Neural Network (CNN) is used to generate the tri-planes from the
shape codes and then a small MLP decoder is used to obtain the SDF values of every
(x, y, z) locations of the volume from the tri-plane features. Thus, the identity model
along with the identity codes (shape codes) are jointly trained in auto-decoder [17]
fashion with the 3D reconstruction loss on predicted SDF values and predicted surface
normals of the training point clouds along with the 2D GAN loss on the multi-view
volumetric renderings of normal maps of the hybrid surface representation. To learn
the expression model along with the expression latent codes, another MLP is used to
capture the deviation deltas of the surface points from the canonical expression to target
expression and trained in auto-decoder [17] fashion with 3D dense correspondence loss.
In summary, the main contributions of this thesis are:

• We propose a neural parametric head model using 2D adversarial loss to implicitly
regularize the latent spaces.

• To our knowledge, we are the first to utilize tri-plane hybrid representation in
neural parametric head models.

• We develop a multi-stage training strategy to effectively use the 2D adversarial
loss along with the 3D reconstruction losses without leading to instability in
training.

Rest of this thesis is structured as follows: Chapter 2 discusses related and existing
works. Chapter 3 covers some theoretical backgrounds of some concepts used in this
thesis. In Chapter 4 we discuss the proposed framework in detail. Then, Chapter 5
covers different experimental setups followed by the results in Chapter 6. Finally, we
conclude in the Chapter 7.

3



2 Related Work

In this chapter we will discuss and review existing works relevant to different parts of
this thesis project. In particular, we will talk about 3D Morphable Models, Neural Field
Representation, Differentiable rendering and Generative Adversarial Networks.

2.1 Explicit 3D Morphable Models

2.1.1 Linear Models

First model-based approach to capture variations in human faces was proposed by
Blanz and Vetter [6] in 1999. They used PCA to construct a low rank approximation
of underlying mesh geometry of 200 head scans. As those scans lacked variation due
to controlled scanning environment, this model was limited in expressiveness. This
model was improved in [7] by using a better non-rigid registration technique. Further
improvements were done by capturing faces in the wild to add more variation in the
data [8, 25, 26]. To improve the disentanglement between identity and expression
space, multi-linear models were proposed [12, 27]. Li et al. [28] used articulated jaw,
neck, eyeballs and pose-dependent corrective blend shapes to bridge the gap between
high-end and low-end face models. Localized deformation model was proposed in [29].

2.1.2 Neural Non-Linear Models

Face models discussed so far were all linear. With increasing success of deep learning,
deep non-linear face models were also proposed. Tran et al. [11] used CNN and GAN
based multi-view reconstruction approach to learn non-linear face models from images.
A number of methods followed convolution based approaches [10, 30–32]. Use of
attention [9] and graph convolutions [13, 33] were also proposed in this context.

2.2 Neural Field Representation

3DMMs discussed above (sec. 2.1) used some form of explicit representation for 3D
shapes in learning face models and thus limited by their shortcomings (see sec. 3.6.1).
Recently, neural field based implicit representations (see sec. 3.6.2) have become quite

4



2 Related Work

popular choice for 3D deep learning due to their efficiency and capacity to represent
high level of details. There are mainly three fundamental lines of work have been done
in implicit representations as follows:

2.2.1 Occupancy Field

Traditionally, in a voxelized 3D representation, each voxel is marked as either occupied
or not occupied. Mescheder et al. [18] extended this idea to use a neural network (MLP)
to predict whether a queried (x, y, z) point is inside (occupied) or outside (not-occupied)
of a shape. Thus, they represent the shape implicitly with the decision boundary of
the binary classifier network over the occupancy field. As the decision boundary is
continuous, the 3D scene can be represented and queried at infinite resolution. Iso-
surface extraction (see sec. 3.6.4) algorithms like marching cubes [34] can be used to
extract a mesh at a desired resolution. Peng et al. [24] later proposed to use convolution
operation in the occupancy network to represent larger scenes with the translation
invariant property of convolution filters.

2.2.2 Signed Distance Field

Signed distance fields are wildly used in 3D scene representation in computer graphics
due to its interesting properties. Quite similar to occupancy network [18], Park et al.
[17] proposed to use a MLP to predict the SDF value at a queried (x, y, z) location
i.e the network will tell what is the distance to the nearest surface from the queried
point. The authors showed that such network can be conditioned with some latent
code to represent different class of shapes. This idea is widely used in many followup
works (see sec. 2.3) and we also use the similar idea (with a little different network
architecture) to represent the 3D faces.

2.2.3 Neural Radiance Field

Although not directly related to this thesis, but one of the most influential inventions in
the recent history of neural field representation is Neural Radiance Field (NeRF) [35].
Here, the idea is to overfit a MLP to a 3D scene to predict the RGB color (r, g, b) and
volume density (σ) of a queried point (x, y, z) along a queried viewing direction (θ, ϕ).
This MLP is trained using a photometric loss on the rendered images obtained from
different camera poses. NeRFs can produce visually appealing photo-realistic novel
views of a scene with view dependent effects. Many followup works have been done
in last few years improving different aspects of NeRF. Zhang et al. [36] proposes to
use separate foreground and background sampling to represent unbounded outdoor
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scenes. Martin-Brualla et al. [37] uses unconstrained ’in the wild’ images to train NeRF.
In [38], NeRF is extended to represent dynamic scenes. KiloNeRF [39] speeds up the
inference time by using ensemble of many small MLPs. In a seminal work Müller et al.
[40] proposed to train NeRF in seconds using multi-resolution hash encoding where
original NeRF usually takes hours or days to train.

The only relation to NeRF with this thesis is that we use some of the volume rendering
formulations (see sec. 3.7.2) proposed in vanilla NeRF [35] for rendering normal maps
from our hybrid SDF shape representation.

2.3 Implicit 3D Morphable Models

With the advent of neural field based implicit representations (see sec. 2.2 & sec. 3.6.2),
many neural implicit 3DMMs have been proposed. Such approaches usually use two
networks: one to represent the shape in canonical pose, another to model the complex
deformations due to change in expression or pose. SDF based parametric models for
human bodies have been proposed in [19, 41, 42]. In [43, 44], implicit generative head
models are proposed, but they do not consider to model expressions. Yenamandra et
al. [14] models both identity and expression as a deformation over a reference shape in
neutral expression implicitly represented as a SDF. ImFace [15] extended the idea by
using pseudo SDF for water-tightness and facial keypoint based localized approach to
capture local surface details. Zheng et al. [16] uses video based correspondences to
reconstruct an implicit head morphable model. NPHM [20] improves over ImFace [15]
by using higher quality 3D scans and big ensemble of local MLPs. Amongst many of
such recent implicit parametric models, two are most relevant to this thesis and thus
we have elaborated more on those as follows:

2.3.1 NPMs

Although, originally introduced [19] for full body parametric model, this forms the
baseline of our parametric head model. It represents the shape with DeepSDF [17]
based implicit SDF. Shape codes are learnt jointly along with the SDF shape network.

Pose is modeled as forward deformation over canonical T-pose and pose codes are
jointly learned with pose deformation network with dense correspondence.

Although, this thesis is mostly based on NPMs [19], there are few fundamental
differences: 1) We use tri-plane based hybrid representation instead of DeepSDF
like representation, 2) We additionally use 2D GAN loss on the multi-view normal
renderings.

6
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2.3.2 NPHM

NPHM [20] is one of the state-of-the-arts and also same data set is used in this thesis.
NPHM is also inspired by NPMs [19], but instead of DeepSDF [17] based implicit
representation, it uses ensemble of local MLPs centered around facial keypoints or
anchors to capture more local details and use weight sharing between some of the local
MLPs to exploit the symmetry based geometric priors.

Once again, the main differences of NPHM [20] to our approach are: 1) We try to
take care of local details using tri-plane based representation instead of ensemble of
MLPs, 2) We use 2D adversarial loss on the 2D rendering of the normal maps.

2.4 Differentiable Rendering

Differentiable rendering is at the core of any formulation that uses a 2D objective
function for reconstructing or manipulating 3D shapes. Although there are numerous
amounts of work done in this domain, we will mostly keep the discussion limited to
image order differentiable rendering that can be used for implicit functions. Groce
et al. [45] used model based 2D objective for 3D hand pose estimation from videos.
Li et al. [46] introduced differentiable monte carlo ray tracing. Müller et al. [47]
introduced neural importance sampling to efficiently sample the volume while ray
marching. This concept was later used in NeRF [35]. DIST [48] proposed differentiable
sphere tracing with gradient approximation for shape fitting with pre-trained DeepSDF
[17] based implicit representation. However, this doesn’t work for training the network
from scratch (see sec. 3.7.1). VolSDF [49] and NeuS [50] were able to successfully
use differentiable volume rendering to reconstruct (train) SDF based neural implicit
surfaces. They used two different (Laplace and Logistic) density formulations, to
convert the SDF values to volume densities required for volume rendering. VolSDF also
used errorbound sampling instead of importance sampling to complement their density
formulation. Many followup works have been proposed mostly either improving the
surface geometry [51–53] or reducing the training time [40, 54] or both [55]. For the
sake of simplicity, in this thesis we have followed MonoSDF [53] volume rendering
approach (see sec. 3.7.2) which intern is mostly inspired by VolSDF [49] formulation.
For a comprehensive review on differentiable or neural rendering please refer to the
recent surveys [56–58].

7
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2.5 Generative Adversarial Networks

GANs, first introduced in [21], have taken the generative modeling to another level
in recent history. In last few years, numerous amount of GAN papers have been
proposed in different domains. However, in the context of this thesis we will restrict
our discussion on GANs in the domain of computer vision.

2D GANs

Original GAN paper [21], used MLP based generator and discriminator (see sec. 3.4)
to generate images of hand written digits. DCGAN [59] used strided convolutions
in generator and convolutions in discriminator to stabilize training for unsupervised
image generation. WGAN [60] and WGAN-GP [61] used 1-Wasserstein distance
instead of Jensen-Shanon divergence to alleviate vanishing gradient problem and thus
improving training stability even further. PGGAN [62] used progressive growing strategy
to train GANs with gradually increasing image resolutions. BigGAN [63] proposed
scalability and stability for high resolution image generation. StyleGAN [64] and its
followups [65–67] proposed highly optimized GAN architectures for human face image
generation with controllable styles and facial features. Pix2pix [68] used conditional
GAN to translate images from one domain to another domain and showed the idea
of using GAN loss along with other reconstruction loss(es). CycleGAN [69] extended
this concept by relaxing the requirement of pair-wise training images by using cycle
consistency loss.

3D or 3D aware GANs

GANs have been explored in 3D generative modelling as well. PlatonicGAN [70] used
3D generator to generate 3D shapes in voxel representation with 2D discriminator
on the rendered images. HoloGAN [71] improves on it using 3D convolution based
intermediate 3D feature representation. GRAF [72] and GIRAFFE [73] uses radiance
field formulation with 2D discriminator to learn 3D representation. π-GAN [74] used
similar approach for 3D aware face image synthesis. EG3D [23] proposed a novel
triplane based hybrid representation to improve the reconstructed 3D geometry. In this
thesis we have used the concept of triplane from EG3D and discriminator from π-GAN.
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3 Theoretical Background

In this chapter, we will give short overview of different key concepts used in this
thesis to provide a basic pre-requisite understanding. In particular, we will touch
upon different types of deep neural networks, concepts of 3D surface representation,
differentiable rendering and generative adversarial networks.

3.1 Deep Neural Networks

Deep Neural Network (DNN)s are the core of any deep learning applications. At a
very high level, they can be thought of a set of matrices sandwiched together with
some kind of non-linear functions in between to loosely mimic the concept of biological
neural networks present in human brain. Mathematically, DNNs can be considered as
universal function approximators due to their ability to learn any complex non-linear
mappings reasonably well between some inputs and outputs. Depending on the low
level fundamental architecture, DNNs can be of many types, out of which we would
discuss only about MLP and CNN in relevance to the context of this thesis.

Figure 3.1: A MLP with single hidden layer
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3.1.1 MLP

Multi Layer Perceptron (MLP), also known as fully connected networks, refers to a
DNN where each node of a layer is connected to all the nodes of next layer. Typically,
this architecture has an input set of neurons followed by one or more fully connected
hidden layers followed by a set of output neurons (see Fig 3.1). The operation of a fully
connected layer on input vector x can be mathematically described as:

f (x) = w0 +
N

∑
n=1

wnxn (3.1)

where w0, w1, ..., wN denotes the weights of a single fully connected layer. Output of this
operation is usually passed through some non-linear activation function before passing
it to the next layer of neurons to add non-linear expressive power to the network.

3.1.2 CNN

MLPs are not efficient when it comes to recognize some repeated or translation invariant
structure, say from images, due to lack of built-in concept of weight sharing. CNNs
address this issue by implementing small learnable filter kernels which slide over the
images to produce feature maps (filter responses). For each position of the filter kernels,
convolution operation is performed by taking dot product between the filter weights
and the small portion of the input data (see Fig 3.2). Please note, if we don’t use
padding, the convolution operation shrink the spatial dimension, thus it can be applied
to gradually compress data in spatial dimension even without using pooling layer.

Transposed Convolution

As we just observed, regular convolution operation shrinks the spatial input size
by using filter kernels. Transposed convolutions, on the contrary, broadcasts input
elements through the kernels and thus expand the spatial size of the input. This is
usually used in image generator or decoder modules. In the context of this thesis we
have used it in the tri-plane generator along with regular convolutions.

3.2 Auto-encoder

This a special type of neural network consisting of two modules namely encoder
and decoder. Encoder gradually compress the high dimensional input into a low
dimensional latent code (bottle neck). Decoder use this low dimensional latent code
and try to reconstruct the input by gradually expanding it (See Fig 3.3). Thus, jointly
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Figure 3.2: Visualization of 2D convolution operation. Image taken from [75]

training both encoder and decoder with input reconstruction loss, compact latent
representations of the inputs can be learnt. However, once such model is trained,
many a times the encoder becomes useless. To address this issue of resource waste,
researchers came up with an encoder free version of representation learning known as
auto-decoder as discussed next.

3.3 Auto-decoder

This is an encoder free version of representation learning introduced in [17]. Here,
instead of generating the latent code from encoder, it is randomly initialized from
standard Gaussian distribution and jointly trained along with the decoder. Fig 3.3
shows a conceptual comparison between auto-encoder and auto-decoder. We employ
this concept in training both of our identity and expression network.

3.4 Generative Adversarial Networks

GANs [21, 22] are one of the most successful generative models in recent history of
deep learning. Traditionally, GANs consist of two neural network modules namely
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3 Theoretical Background

Figure 3.3: Conceptual comparison of auto-encoder with auto-decoder. In auto-encoder
latent code is generated by encoder module, where as in auto-decoder the
latent code is randomly initialized and then jointly trained with the decoder
module. Image taken from [17]

generator (G) and discriminator (D). G generates image (or some data) from noise or
latent codes and D tries to identify whether the sample is real or fake (see Fig 3.4).
They are trained jointly in an adversarial mini-max game with D having the goal of
correctly distinguishing real vs generated samples and G having the goal of fooling D.
Mathematically, this can be formulated as:

min
G

max
D

Ex∼pdata(x)[log D(x)] + Ez∼pz(z)[1 − log D(G(z))] (3.2)

where x denotes the real samples where as z denotes the noise or latent code. In
practice, the second term is implemented as Ez∼pz(z)[log D(G(z))] with label flipping,
to get better behaved gradients.

Figure 3.4: Overview of a GAN. Generator (G) generates fake samples from a randomly
sampled latent code from standard Gaussian distribution. Discriminator (D)
tries to distinguish between real and fake samples.

Wasserstein GAN

Under some generic assumptions on training procedure, minimizing Eq 3.2 becomes
asymptotically equivalent to minimizing Jensen-Shanon (JS) divergence between real
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data distribution and generated sample distribution. However, in initial stages of
training this JS divergence can be undefined (or simply infinite) due to no overlap
between the two distributions, thus providing bad or vanishing gradients. This issue
is mitigated using 1-Wasserstein distance [60] (or Earth Mover Distance) instead of
JS divergence. The modified objective, known as Wasserstein GAN (WGAN), can be
formulated as follows:

min
G

max
D

Ex∼pdata(x)[D(x)]− Ez∼pz(z)[D(G(z))] (3.3)

Wasserstein GAN with Gradient Penalty

The above formulation (Eq 3.3), needs the discriminator to be 1-Lipschitz. Originally
it was achieved using weight clipping [60], but later it was found penalizing the
discriminator gradient [61] is a better approach to produce over all well behaved
gradients. This formulation, known as WGAN-GP, is used in our discriminator loss.

3.5 Signed Distance Fields

Signed Distance Field, in short SDF, is one of the most crucial concepts of this thesis as
we represent the shapes with SDFs using a hybrid representation as described in 3.6.3.
Theoretically, SDF value at a point p in a signed distance field refers to the distance of
the nearest surface from p.

Figure 3.5: 2D SDF visualization of a circle. Image taken from [76]

Now, if the underlying surface is closed or watertight (i.e. it has a well defined inside)
then a negative SDF value implies p is inside the shape, positive SDF value implies p is

13



3 Theoretical Background

outside the shape and the value is 0 exactly on the surface. However, if the underlying
surface is not watertight, then positive SDFs refers to free spaces, but negative SDFs
represents unknown values [77]. Fig 3.5 shows a 2D SDF field of a circle.

3.6 3D Representation

A 2D digital image is almost ubiquitously represented as a 2D (grayscale) or 3D (color)
tensors of pixel values. However, when it comes to 3D shapes, there exists a multitude
of digital representations each with their own pros and cons. Fig 3.6 shows different
3D representations.

Figure 3.6: Different representations of a 3D surface along with their 2D analogues.
Image taken from [18]

3.6.1 Explicit

Such representations explicitly store some form of information of the 3D shape into
some data structure. Based on the data structure used and information stored, such
representations can be of following types:

Voxel

This is direct 3D extension of the 2D pixel concept. This represents a volume with a
3D grid of 3D unit volumes (cubes). In the simplest variant each voxel stores binary
occupancy value thus representing the 3D shape (or scene) with a dense n3 occupancy
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grid where n denotes the grid resolution. This can represent arbitrary topology, but it
is highly limited by smaller grid resolution as memory requirement grows in O(n3).

Point

This represents a 3D shape with a set of 3D point co-ordinates sampled from the surface
of the shape. This is efficient in memory and can represent arbitrary shapes, but it
doesn’t contain any information of the shape topology and thus it is quite challenging
to extract accurate surface from such representation.

Mesh

This represents a 3D shape with a bunch of connected triangles (or polygons in
general). It is memory efficient and ready-to-use for existing computer graphics
pipelines. However, it can’t represent variable topology and thus difficult to be used in
deep generative modeling.

3.6.2 Implicit

This is one of the most suited representation for deep generative modeling as it
employs a neural network to represent an arbitrary 3D shape as the continuous decision
boundary of a classifier or regressor. When queried with a (x, y, z) 3D co-ordinates
such networks outputs the SDF or OF values and thus the shape is represented as a
particular Iso-Surface of the underlying volumetric field. As this approach doesn’t
discretize the volume, it can be queried at infinite resolution.

3.6.3 Hybrid

This method utilizes concepts of voxel as well as implicit representation to combine
the best of both the worlds. There can be many different hybrid representations, but
in the context of this thesis we consider tri-plane representation introduced in [23]. In
tri-plane representation, three orthogonal feature planes are used to represent 3D aware
rich features along three canonical axis aligned planes. With a (x, y, z) co-ordinate
input, first the point is projected to three orthogonal planes and tri-plane features are
computed by interpolating over the corresponding feature planes. Then the implicit
network is queried with extracted and aggregated tri-plane features to obtain SDF or
color and density values. Fig 3.7 shows tri-plane representation.
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Figure 3.7: Tri-plane representation. A 3D input point is first projected to three orthog-
onal planes to extract axis aligned features namely Fxy, Fxz and Fyz using
bilinear interpolation. Then such features are aggregated by summation.
Finally, the network is queried with the aggregated features to get the SDF
(not shown) or color and density values of the corresponding input point.
Image taken from [23]

3.6.4 Iso-Surface Extraction

Implicit and hybrid (tri-plane) representations do not directly store the shape surface
information, instead represent surface as a particular iso-value level-set of the volu-
metric field. Therefore, special algorithm is required to extract the iso-surface. To this
end, we use popular Marching Cubes algorithm introduced in [34]. At a high level, this
algorithm individually carves out the triangles from each voxels of a volumetric grid by
comparing the eight corners with the predefined iso-value (0 for SDF and 0.5 for OF)
and thus classifying each voxels in one of fifteen patterns as depicted in Fig 3.8. These
individual triangles are finally unified to obtain the full triangle mesh representation of
the shape.

3.7 Differentiable Rendering

In computer graphics, rendering in general refers to the process of generating 2D views
of a 3D scene with a camera model. Differentiable rendering algorithms can back
propagate gradients from 2D to 3D such that 2D losses on the views can be used for
3D reconstruction.
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Figure 3.8: Fifteen unique voxel patterns for marching cubes algorithm. Bold black
corners represents values less than predefined iso-value, there by denoting
the points inside the 3D surface. Such triangles from each voxels are finally
unified to extract the full triangle mesh. Image taken from [34]
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Figure 3.9: Illustration of the classical sphere tracing algorithm: The intersection point
with a surface is determined by traversing along the ray, using the distance
to the closest surface at each iteration step until the distance is below a
threshold. Green represents the surface, blue spheres represent SDF values
encoded in their radii. Image taken from [78]

If the rendering algorithm starts with the 3D scene and tries to figure out iteratively
which objects would be visible in a particular camera view, such rendering algorithms
are known as object order rendering. On the other hand, if the algorithm starts from
the 2D pixel grid and shoots ray in the scene, such algorithms are known as image
orderimage order rendering. There exists a multitude of differentiable rendering
algorithms, thus discussing all of them is out of scope. Below we briefly discuss two
image order rendering algorithms in the context of rendering normal maps relevant to
this project.

3.7.1 Sphere Tracing

This is an image order surface rendering technique applicable specifically to SDFs. Here
we shoot rays from camera to the scene through the image pixels and iteratively march
into the 3D scene to get the surface interaction. Now, as the SDF value at any (x, y, z) co-
ordinate tells us the distance of the closest surface from that point, at each ray marching
step the ray can safely march a max distance provided by the current SDF value without
hitting any surface. Thus actual ray marching can be significantly accelerated to quickly
find the ray intersections. Once the ray intersection is obtained, we can calculate the
surface normals (which are none other than the normalized gradients of the SDF at
those points) at the intersection points either by automatic differentiation or finite
difference methods. Fig 3.9 illustrates the concept of sphere tracing.

This works great with correct SDF values, i.e. in our context with already trained SDF
networks. However, when the model is not trained and SDF values are mere random
guess, this algorithm not only just fails to render normal maps, but also produces
random gradients in the back propagation and there by doesn’t help in analysis
by synthesis mechanism of 3D reconstruction. Hence, we use volume rendering as
discussed next.
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3.7.2 Volume Rendering

This is also an image order rendering technique which shoots ray from camera to
the scene through each pixel of the 2D image grid. However, unlike sphere tracing
it doesn’t explicitly stop at ray intersection and instead continues to go through the
scene and sample density and color (or normals) values. While integrating along the
ray weights are adjusted such a way that density or the opacity becomes maximum
at the first hit. In other words if we have the normal n and density σ in continuous
co-ordinates, we can render the normal N(r) of the camera ray r(t) = o + td with near
and far bounds tn and t f using a volume rendering technique:

N(r) =
∫ t f

tn

T(t)σ(r(t))n(r(t), d) dt (3.4)

where T(t) is given by:

T(t) = exp
(
−

∫ t

tn

σ(r(s)) ds
)

(3.5)

SDF to density conversion

However, in our context the model outputs SDF values and not a σ density. So,
we need a mechanism to convert the SDF to density values. To this end, we use
similar formulation as of VolSDF [49] and MonoSDF [53] to transform SDF values s to
corresponding density values σ as follows:

σβ(s) =


1

2β exp
(

s
β

)
if s ≤ 0

1
β

(
1 − 1

2 exp
(
− s

β

))
if s > 0

, (3.6)

where β is a learnable parameter. In practice, we finally compute the normals N̂(r) ) of
the surface intersecting the current ray r using the discretized numerical integration as
proposed in NeRF [35] as follows:

N̂(r) =
M

∑
i=1

Ti
r αi

r n̂i
r Ti

r =
i−1

∏
j=1

(
1 − α

j
r

)
αi

r = 1 − exp
(
−σi

rδ
i
r

)
, (3.7)

where Ti
r and αi

r denote the transmittance and alpha value of sample point i along ray
r, respectively, and δi

r is the distance between neighboring sample points.
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In this chapter we will discuss in detail the network architectures and design of multiple
objective functions to train the networks.

4.1 Overview

We implicitly represent a face identity in open mouth neutral expression as a SDF
modeled as a neural network conditioned with a latent code for identity. We use
another neural network as a forward deformation field over the neutral expression
to model the expression space. This deformation network is conditioned with two
separate latent codes for identities and expressions. We will discuss each of these
components in detail in the following sections.

4.2 Modeling Identity

We propose to use a tri-plane representation [23] based implicit network and a 2D
adversarial loss along with existing 3D losses [19, 20] to model the face identity. Fig 4.1
shows a schematic of the proposed identity model which is discussed in detail in the
following sub sections.

4.2.1 Input and Output

We model face identity (face in open mouth neutral expression) with an implicit neural
network Fid(x, zid) : R3 × Rdid −→ R, which takes a 3D co-ordinate x ∈ R3 along with a
latent code zid ∈ Rdid and predicts corresponding SDF value ŝ ∈ R. Identity latent code
zid is initialized from a standard normal distribution and learnt in an auto-decoder (see
sec. 3.3) fashion.

4.2.2 Model Architecture

For modelling identity we use tri-plane representation (see sec. 3.6.3), so the identity
network Fid is internally composed of two modules namely tri-plane generator, which
generates the tri-planes from latent codes and tri-plane decoder, which produces the
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Figure 4.1: Schematic diagram of the proposed identity model. Identity latent code zid
is randomly initialized from standard normal distribution and is used to
generate the identity specific tri-planes using tri-plane generator TPgen. Then
tri-plane features are extracted using bilinear interpolation (see sec. 3.6.3)
for every randomly sampled points (x, y, z) from the ground truth shapes.
These features are aggregated by summation and fed to tri-plane decoder
TPdec to predict the corresponding SDF values which is directly used to
calculate the 3D losses Lss and Lsn. On another branch, volume rendering
is used to render 2D normal maps from the implicit identity network Fid.
These 2D normal maps are used to compute 2D normal reconstruction loss
Lnmr and discriminator loss Ld. Finally, all the losses are back propagated
to jointly train discriminator D, volume renderer R, identity network Fid
and identity code zid in auto-decoder fashion. Please note, this diagram
doesn’t show the regularization losses for simplicity. All losses are listed in
Table 4.1.

Figure 4.2: Tri-plane decoder (TPdec) architecture. It is a five layer MLP that takes the
sampled tri-plane features corresponding to a 3D point co-ordinate (x, y, z)
and predicts the corresponding SDF value of that point. We concatenate
the original points to the tri-plane features for a slightly better (observed)
performance.
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SDF value at queried (x, y, z) location using tri-plane features. Other than these two
components, we also need a volume rendering module and a discriminator module for
computing the 2D adversarial objectives.

Tri-plane Generator

It is a convolutional neural network TPgen(zid) : Rdid −→ R3×d f ×tres×tres which produces
three feature planes from a given identity code zid. Here, d f is the feature depth and
tres is the spatial resolution of each feature planes. For all of our experiments, we
typically set d f = 32 and tres = 256 following EG3D [23]. TPgen is implemented as a
slightly modified DCGAN [59] generator where we remove the last tanh and add an
upsample layer with scale_ f actor = 4 followed by a conv2d layer with kernel_size = 3,
padding = 1 and out_channels = 96. Finally, we split the output tensor across the
channel dimension to produce 3 planes having 32 channels each. We have also tried
with StyleGAN2 [65] generator as used in EG3D [23], however we observed similar
performance while DCGAN generator was easier to train. Hence, for the sake of
simplicity we stick to DCGAN generator in this context.

Tri-plane Decoder

Fig. 4.2 shows tri-plane decoder architecture. It is a five layer MLP modeled as
TPdec(x, F) : Rd f +3 −→ R which takes the aggregated tri-plane features F concatenated
with 3D co-ordinate x and produces the SDF value for that input co-ordinate. All the
hidden layers have 256 nodes (neurons) and softplus non-linearity with beta = 100.
A 3D co-ordinate x := (x, y, z) is first projected into the three orthogonal feature
planes and tri-plane features FXY, FYZ, FXZ are calculated from each of the feature
planes using bilinear interpolation. Then, these features are aggregated by sum i.e.
F = FXY + FYZ + FXZ. We observed slightly better performance by concatenating the
input co-ordinate (x, y, z) with F to form a combined input to the tri-plane decoder.

Volume Renderer

Given, an implicit shape representation network Fid ∈ F , camera intrinsic K ∈ R3×3,
camera pose (extrinsic) Rt ∈ R4×4 and image resolution res ∈ R, volume rendering can
be modeled as R(Fid, K, Rt, res) : F ×R3×3 ×R4×4 ×R −→ Rres×res×3, which produces
a (res × res) 2D view (image) of the 3D implicit shape based on the camera intrinsic
and extrinsic parameters. We shoot one ray per pixel (see Fig. 4.3) and perform error
bound sampling like VolSDF [49] within unit sphere (see Fig. 4.4). We render normal
maps instead of RGB images and use MonoSDF [53] formulation for volume rendering
with only one learnable parameter β. See sec. 3.7.2 for more details.
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Figure 4.3: A schematic diagram for ray shooting. For volume rendering we shoot rays
from camera to the scene through each pixel of the image (only 4 rays are
shown), there by shooting only one ray per pixel. Image taken from [79]

Figure 4.4: Visualization of actual ray samples for volume rendering. Blue dot denotes
the camera location or ray origin and the arrows show ray directions (only
5 rays are shown for simplicity). As all the shapes are bounded within
unit sphere, we adjust the near and far planes such that maximum samples
are concentrated inside the unit sphere. Please note: the face shape inside
sphere is shown just for visualization purpose, actually the explicit shape
doesn’t exist, instead it is encoded in the latent code zid and the parameters
of network Fid.
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Discriminator

Discriminator D : Rres×res×3 −→ {0, 1} is used to classify the normal maps as real
or generated to compute the discriminator loss. To this end, we use π-GAN [74]
discriminator implementation with only one modification. We just disable the progressive
growing mechanism as we render the normal maps at fixed resolution res = 64.

Table 4.1: Objective functions, types, notations and weights used in modeling identity

Objective function Type Notation Weight

Surface SDF 3D Lss λss = 2.0 × 101

Surface Normal 3D Lsn λsn = 3.0
Eikonal 3D reg Leik λeik = 2.0
Non-surface penalty 3D reg Lnsp λnsp = 1 × 10−1

Explicit Density 3D reg Ledr λedr = 1 × 10−5

Normal Map 2D Lnmr λnmr = 2.0
Generator loss 2D reg Lg λg = 1.0
Discriminator loss 2D reg Ld λd = 1.0
Total Variation reg Ltv λtv = 1 × 10−4

Tri-plane Penalty reg Ltp λtp = 1 × 10−4

4.2.3 Design of Training Objectives

To train our neural parametric head (identity) model a number of objective functions
are used roughly grouped into 3D objectives, 2D objectives and regularization objectives.
3D objectives are computed with 3D data, i.e point clouds in our case, whereas 2D
objectives are computed on multi-view normal map renderings of the implicit shape.
Regularization objectives are used to obtain well behaved latent space and well behaved
implicit shape representation. Table 4.1 lists all the objective functions for modeling
identity and below we discuss their mathematical formulation.

Surface SDF

By definition SDF value should be zero on the surface (manifold) of the shape. To apply
this constraint we sample 3D points from surface of the 3D scans and formulate the
objective as follows:

Lss := ∑
x∈δX

|Fid(x, zid)| (4.1)
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where δX denotes the 3D point samples on the surface of the shape and zid is the
identity latent code.

Surface Normal

To represent the shape correctly, the surface normals from the implicit SDF representa-
tion should match the surface normals from the ground truth mesh, or in other words
their scalar product should be 1. To this end, surface normals from the implicit shape
can be computed from the gradient of the SDF on surface points. Thus, we model this
objective as follows:

Lsn := ∑
x∈δX

(1 − ⟨∇Fid(x, zid), nid(x)⟩) (4.2)

where ∇ denotes the gradients with respect to x, nid(x) denotes the ground truth
surface normals at x for a particular identity and ⟨., .⟩ denotes the scalar (dot) product.

Eikonal

This is a property of a true SDF that everywhere within the field, the gradient of the
field will have unit norm. This idea was introduced as a regularization for training
implicit shapes in [80, 81] to avoid everywhere zero solution. We also use this constraint
modelled as:

Leik := ∑
x∈X∪δX

(
||∇Fid(x, zid)||2 − 1

)
(4.3)

where X denotes the set of random 3D co-ordinates of free space within unit sphere
and δX denotes the 3D point samples on the surface of the shape as earlier.

Non-surface Penalty

This objective penalizes the free space (non-surface) points from producing zero SDF
values. Mathematically, this is modeled as exponential penalty:

Lnsp := ∑
x∈X

exp(−α|Fid(x, zid)|) (4.4)

where α is a constant and typically we set this value to 10.

Explicit Density Regularization

Inspired from [82], this regularization is used to learn a smooth outside-of-shape
volume. The idea here is that for a small random perturbation on the non-surface
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points the output of the implicit network should not change much. Mathematically:

Ledr := ∑
x∈X

||Fid(x, zid)−Fid(x + ω, zid)||22 (4.5)

where ω is a small random noise vector sampled from N (0, 0.0001).

Normal Map Reconstruction

Here, the idea is that 2D normal map obtained through volume rendering of the
implicit shape from a particular camera pose should match the ground truth normal
map obtained from rendering the 3D ground truth mesh in that same camera pose.
Let’s assume there are M number of different view normal renderings available for a
particular identity id denoted as N(v)

id , where v ∈ {1, 2, . . . , M}. Then, this reconstruction
loss can be modeled with L1 loss as follows:

Lnmr :=
M

∑
v=1

||N̂(v)
id − N(v)

id ||1 (4.6)

where N̂(v)
id are the predicted normal maps:

N̂(v)
id = R(Fid, K(v), Rt(v), res) (4.7)

where R is the volume rendering function defined in sec. 4.2.2.

Adversarial Objectives

We use the discriminator D defined in sec 4.2.2 in an adversarial setting with a goal
to make the volume rendered normal maps indistinguishable from the ground truth
normal maps. We train the discriminator to classify the ground truth samples to class
1 and estimated samples to class 0, where as the generator i.e the identity network is
trained to fool the discriminator. We use a non saturating GAN loss with R1 penalty
[83] formulated as follows:

Ld(D; G) := E(zid,v) [ f (D(G(zid, v)))] + E
(N(v)

id )

[
f (−D(N(v)

id ))
]
+ λLgp (4.8)

Lg(G; D) := E(zid,v) [ f (−D(G(zid, v)))] (4.9)

Lgp := E
(N(v)

id )

[
|∇D(N(v)

id )|2
]

(4.10)

f (u) := log(1 + exp(u)) (4.11)
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where λ is a constant and we typically use λ = 5. Generator G can be considered as
the composition of the renderer R and identity network Fid i.e. G := R ◦ Fid. More
explicitly this is defined as:

G(zid, v) := N̂(v)
id = R(Fid(zid), K(v), Rt(v), res) (4.12)

(we have omitted the co-ordinates input x for simplifying the notation.)

Total Variation

To simplify the data manifold we regularize the tri-plane feature planes using Total Vari-
ation (TV) as proposed in [82]. Let, fh : Rd f ×tres×tres −→ Rd f ×tres×tres and fv : Rd f ×tres×tres −→
Rd f ×tres×tres are two functions which flip the input horizontally (across second dimen-
sion) and vertically (across third dimension) respectively. Then mathematically TV
penalty can be computed as:

Ltv := ∑
p∈{xy,yz,xz}

(√
∑(tp − fh(tp))2 +

√
∑(tp − fv(tp))2

)
(4.13)

where txy, tyz, txz three orthogonal feature planes generated from an identity code zid
using tri-plane generator TPgen.

Tri-plane Penalty

To avoid very high values (or outliers) in the feature planes we use a L2 penalty as well
on the tri-planes as follows:

Ltp := ∑
p∈{xy,yz,xz}

||tp||2 (4.14)

Combining All the Objectives

We combine all but the discriminator loss Ld using weighted sum with the weights
defined in Table 4.1. Summing up this individual combined loss for all identities in
training set we get total identity loss Lid :

Lid := ∑
j∈J

∑
s∈S

λs(Ls)(j) (4.15)

where J is the set of all training identities and S is the set of all sub scripts except d, i.e.

S := {ss, sn, eik, nsp, edr, nmr, g, tv, tp} (4.16)

Lid is back propagated to train the renderer R, identity network Fid and identity latent
codes zid whereas ∑j∈J (Ld)(j) is back propagated to train the discriminator D.
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4.2.4 Multi-stage Training

We use the 2D GAN loss to constrain or implicitly regularize the latent space to learn
the distribution of the real faces. However, as we only use a very small rendering
resolution of 64 × 64 due to high computational cost, we observe a saturation in the
loss after few thousand epochs with reconstructions lacking fine surface details like
eye-lines or so. So, we come up with a multi-stage training strategy where we train
with all the objectives upto 5k epochs, then we shut off the 2D objectives (Lnmr, Lg, Ld)
and train another 3k epochs. After that we turn off Ledr, Ltp and Ltv and keep training
untill convergence (usually around 12k-15k epochs) only with the 3D losses. Here, the
intuitive understanding is that GAN based 2D loss acts as an adaptive regularizer in
the early training phase to help the model avoid bad local minima, whereas at later
training phase only 3D losses are used to recover the fine surface details.

4.3 Modeling Expression

This thesis is mostly focused at modeling identity. So, for modeling expression we have
used similar forward deformation approach as of [19, 20]. The high level idea here is to
train another neural network to deform the faces in neutral (canonical) expression to
match the target expression while preserving the face identity.

4.3.1 Input and Output

We model expression with a deformation network Fex(x, zex, zid) : R3 × Rdid+dex −→ R3

which takes a 3D co-ordinate x ∈ R3 (in neutral pose) along with a pre-trained identity
code zid ∈ Rdid and a randomly initialized expression code zex ∈ Rdex and predicts the
point wise deformation ∆x ∈ R3 such that xposed = x + ∆x is the corresponding point
of x in the target expression. Identity code zid is pre-trained in identity model and
frozen, whereas zex is initialized from a standard normal distribution and is trained in
auto-decoder (see sec. 3.3) fashion along with the deformation network Fex.

4.3.2 Model Architecture

Following [19, 20], we use a MLP as the deformation network Fex. In particular,
we use a DeepSDF [17] network with input_dim = 3, output_dim = 3, n_layers = 8,
hidden_dim = 1024 and latent_dim = did + dex = 512 + 200 = 712 as we use did = 512
and dex = 200 as the latent code lengths for identity and expression spaces respectively.
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4.3.3 Design of Training Objectives

To train the expression (deformation) network Fex we use two 3D objectives and one
regularization on the expression latent codes zex as described below:

Correspondence Loss

Here the idea is that if we add the deformation deltas ∆x to the unposed (neutral
expression) co-ordinates x it should be close to the corresponding points xposed in the
target expression. Formally this can be defined as:

Lc := ∑
x∈X

(
(x + ∆x)− xposed

)2 (4.17)

∆x := Fex(x, zex, zid) (4.18)

where X is the set of all (surface) points in the facial region of neutral (canonical)
expression for an identity and xposed denotes the ground truth correspondence (or
image) of a point x in a particular expression pose for that same identity.

Deformation Penalty

Deformation field should only be locally active in the face region i.e. it should not
deform the global structure of the head while changing expression. That means
deformation deltas should be zero for any random points outside the face region.
Mathematically this can be modelled as:

Ldp := ∑
x ̸∈X

||Fex(x, zex, zid)||22 (4.19)

Latent Regularization

To have a well-behaved expression latent space and avoid outliers or very high values
in the expression latent code zid we add a L2 regularization on it:

Lr := ||zex||22 (4.20)

Combining All the Objectives

All of the above losses are calculated for each of L expressions for each of J identities
and combined with weighted sum as follows:

Lex := ∑
j,l∈J,L

λc(Lc)(jl) + λdp(Ldp)(jl) + λr(Lr)(jl) (4.21)
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where λc = 1.0 × 102, λdp = 1.0 × 10−5, λr = 5.0 × 10−5 are the weights for the corre-
sponding three objectives. Lex is back propagated to train the expression (deformation)
network Fex.

4.4 Model Fitting

Model fitting refers to the inference time process of finding the identity zid and expres-
sion zex codes from a single depth frame observation of a previously unseen face. We
can use this process to use the learned face priors to reconstruct new faces from single
frame depth observation. Below we discuss model fitting for identity and expressions
for our parametric head model.

4.4.1 Identity Fitting

Let’s assume we have a single view depth map Xp ⊂ R3 of a previously unseen person
in neural expression. Ideally we need to jointly optimize for zid and zex keeping Fid
and Fex frozen. Expression code zex is involved here to capture minor deviations from
perfectly neutral expression. Now, jointly optimizing for identity and expression with a
forward deformation expression model is not trivial. To this end, we follow SNARF
[84] and NPHM [20] which used iterative root finding to get Xc points in perfect neutral
expression and then optimize for zid. Mathematically,

xc = arg min
x

|xp −Fex(x, zex, zid)| (4.22)

and then optimize for zid and zex in the following:

∑
xp∈Xp

|Fid(xc, zid)|+ λ
f it
id ||zid||22 ++λ

f it
ex ||zex||22 (4.23)

However, for the ablation study (see sec. 6.3) we assume that the input depth observa-
tion is already in perfect neutral expression i.e. Xp and Xc are interchangeable and thus
optimize only equation 4.23.

4.4.2 Expression Fitting

We already get zid and a good initial estimate for zex from identity fitting. So, here
we optimize further only for zex using the same equation 4.23 keeping everything else
fixed to fit a particular expression for a particular identity.
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As the name suggests, in this chapter practical details of the experiments will be
discussed. In particular, we will talk about dataset, data pre-processing, experimental
setup, evaluation metrics and comparison baselines.

5.1 Dataset

We used the same 3D head scan dataset acquired by NPHM [20] for training our
identity and expression models. Dataset has 3D face scans of 255 different subjects out
of which 188 are male and 67 are female. Each subject has roughly 19 to 23 different
expressions, thereby having 5200 scans in total.

5.1.1 Data Scanning

Human subjects were scanned by the NPHM [20] authors at Technical University
of Munich (TUM) Visual Computing Lab using two Artec Eva scanners attached at
a complementary viewing angle to the two opposite ends of an inverted U-shape
structure rotating around the subjects’ heads with the help of a robotic actuator.

Each of the two scanners uses structured light projection approach for range mea-
surement and produces 95 frames over 6 seconds for a full 360◦ rotation. All of these
frames are processed, aligned and finally fused into 3D mesh followed by hole filling
and noise removal. For more details on this, please refer to Appnedix B of NPHM [20]
paper.

5.1.2 Data Pre-processing

NPHM dataset provides ground truth 3D mesh scans, their registration meshes and
FLAME [28] fitting meshes. However, to train our implicit identity network we need
3D point clouds with ground truth SDF and normal values for the 3D losses and 2D
ground truth multi-view normal maps for the 2D losses.
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Torso Separation

NPHM [20] raw meshes contains significant portion of torso roughly until chest.
However, as we are interested in head model, we separate the torso portion from the
head using a plane defined by three vertices in the corresponding FLAME [28] fitting
following NPHM [20] approach for the sake of simplicity.

Sampling Points

We sample sample (x, y, z) point co-ordinates on and around the surface of the ground
truth 3D meshes following DeepSDF [17] sampling strategy. To this end, we first
sample Nsur f points on the mesh whose SDF values are zero by definition and normals
are calculated using barycentric interpolation of adjacent face normals. We further
divide Nsur f points into two sets namely N f ace

sur f and Nnon_ f ace
sur f depending on whether

they are in face or non-face region of the head. Now, we perturb these two sets
of points twice with standard deviations σ1 = 0.0025 and σ2 = 0.00025 to create
another four sets of near surface points namely N f ace

near_sur f _1, Nnon_ f ace
near_sur f _1, N f ace

near_sur f _2

and Nnon_ f ace
near_sur f _2. We compute their ground truth SDF values by using virtual laser

scanning model. Finally, we sample Nball points uniformly from a unit sphere centered
at origin. Please note here, scanned meshes in NPHM dataset are already normalized
to be centered at origin and bounded within unit sphere, so scaling and translation
is not required. In practice, for speed we pre-compute point samples in bulk (25M
samples) and randomly sub-sample |N f ace

sur f | = |N f ace
near_sur f _1| = |N f ace

near_sur f _2| = 750,

|Nnon_ f ace
sur f | = |Nnon_ f ace

near_sur f _1| = |Nnon_ f ace
near_sur f _2| = 250 and |Nball | = 300 points per head per

iteration.

Normal Maps Rendering

We need multi-view ground truth 2D normal maps for computing 2D losses. To this
end, we employ the concept of Fibonacci lattice [85, 86] to uniformly place 128 virtual
cameras, each looking at the object at origin, on a sphere of radius 2.6 and render
the 2D normal maps in OpenGl convention using pyrender. It is noteworthy, that the
MonoSDF [53] based differentiable volume rendering approach used in our training
pipeline follows OpenCV camera convention instead of OpenGl convention. We resolve
this discrepancy by computing an extra transformation on the volume renderings to
bring them in OpenGl format.
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Sampling Deformations

As we model different expressions as deformation fields over neutral expression,
we need to sample neutral and posed point pairs. Sampling such pair-wise point
correspondences from the ground truth raw scans is not trivial due to different number
of vertices or faces. So, following NPHM [20], we sample the deformation point pairs
from non-rigid registrations of the faces in neutral and different expression. To this
end, we first sample Nde f points from the registration mesh of the neutral expression
and find their face ids and barycentric coordinates. Then we use this information to find
corresponding points on the registered mesh posed with some expression. Then, we
repeat the process by sampling on the posed mesh first followed by correspondence
finding on the neutral mesh. Thus, we sample two way correspondences and reduce
directional sampling bias. To make this process even robust, we add two levels of
Gaussian noise with σ1 = 0.01 and σ2 = 0.002 for loose and tight correspondence pairs
respectively. We typically pre-compute such point pairs in bulk (1M samples per head
per expression) and randomly sub-sample 1000 point pairs per head per expression per
iteration.

5.2 Experimental Setup

Here we will talk about the system configurations and hyperparameters used in our
experiments in the following sub-sections.

5.2.1 Hardware and Software Configuration

We have performed all of our experiments on a Linux server running Ubuntu 20.04.4
LTS with 16 core Intel(R) Xeon(R) W-2245 CPU (3.90GHz), 64 GiB DDR4 RAM and a
NVIDIA RTX3090 GPU with CUDA 11.6. To run our experiments in default setting,
minimum 24 GiB of GPU VRAM is required.

We have used Python 3.10.9 as the programming language and PyTorch 1.12.1 as the
deep learning framework. To mention some more important specific python libraries,
we have used trimesh for mesh operation, pyvista for visualization, pyrender for rendering
ground-truth normal maps, numpy to compute and store ground-truth SDFs and surface
normals and wandb for tracking training progress.

5.2.2 Hyper-parameters and Design Choices

We make quite a few design choices and set a lot of hyper-parameters in different
portions of our proposed approach. We discuss them as follows:
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Architecture

For the identity model, the first design choice we make for the tri-plane generator
(TPgen) architecture amongst Style GAN2 vs DCGAN approach. From single shape
over-fitting experience we have empirically observed Style GAN2 approach takes longer
to reach same performance as of DCGAN approach. Hence, we use DCGAN generator
model for the tri-plane generator and set identity latent code dimension did = 512,
tri-plane resolution tres = 256 and tri-plane feature depth d f = 32 following EG3D [23].
For the tri-plane decoder (TPdec), we use a MLP with 5 layers and 256 neurons in each
hidden layer with SoftPlus non-linearity with beta = 100. For the discriminator (D), we
use π-GAN [74] discriminator with progressive growing disabled. For NPM [19] baseline,
we use a MLP with 8 hidden layers with 1024 neurons in each layer with SoftPlus
non-linearity with beta = 100 and skip connection in layer 4 following DeepSDF [17].
For expression model, we use similar architecture as of NPHM [20].

Rendering

For rendering multi-view normal maps we place the virtual cameras on a sphere of
radius 2.6 centered at origin, set near = 0.2, f ar = 5.0 and use rendering resolution
res = 64. Additionally, for the differentiable volume rendering we use error bound
sampling with 32 initial samples and 32 evaluation samples, ϵ = 0.1, initial β = 0.001,
βmin = 0.0001, beta-iteration βiter = 10 and maxiter = 10 following MonoSDF [53].

Objective Functions

Weights of the different objective functions are some of the crucial hyper-parameters
for the proposed model. For the proposed identity model, these hyper-parameters are
already listed in Table 4.1. For NPM [19] baseline and ablation with only 3D losses we
use slightly different weights as follows: λss = 2.0, λsn = 0.3, λeik = 0.1, λnsp = 0.01.

Training

For training NPM [19] baseline and ablations with only 3D losses we use batch
size bs = 32, learning rate lr = 5 × 10−5, learning rate for identity codes lrlat =

1 × 10−3, grad_clip = 0.1, grad_cliplat = 0.1, lr_decay = 0.75, weight_decay = 0.02,
decay_interval = 1000 and decay_intervallat = 2000. For the full proposed model and
ablations involving 2D losses we use batch size bs = 4 and for the experiments in-
volving discriminator we set discriminator learning rate lrdisc = 2 × 10−4, keeping
other hyper-parameters same as mentioned before. We use AdamW, SparseAdam, and
SGD optimizers for training identity network, identity latent codes and discriminator
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respectively. For training expression model we use same hyper-parameters as of NPHM
[20].

Mesh Extraction

For mesh extraction from the implicit surface, in all our experiments, we query the
network at 3D grid points within (−1, 1) with grid resolution resgrid = 256 and then
run marching cubes algorithm with threshold = 0.0.

5.3 Evaluation Metrics

For quantitative comparison of the proposed model with the baselines and ablations,
we have used three evaluation metrics, similar to NPHM [20], namely Chamfer-L1

distance, Normal Consistency (N.C.) and F-Score @ t. We discuss these formulations in
the following sub-sections.

5.3.1 Chamfer Distance

It measures the similarity between two point clouds Pgt and Ppred and defined as average
distance between the pairs of nearest neighbours between the two point clouds. To this
end, we sample 2.5 M points from each of reconstructed and ground-truth meshes to
create Ppred and Pgt respectively and then mathematically define Chamfer-L1 distance
as:

Chamfer-L1(Ppred, Pgt) :=
1

|Pgt| ∑
x∈Pgt

min
y∈Ppred

||x − y||1 +
1

|Ppred| ∑
y∈Ppred

min
x∈Pgt

||x − y||1 (5.1)

Quite intuitively, by construction, lower value of this measure refers to higher similarity
between Pgt and Ppred and thereby corresponds to better reconstruction.

5.3.2 F-Score

It is used to explicitly evaluate the distance between the ground-truth (gt) and recon-
structed (pred) surfaces and defined as the harmonic mean of precision and recall.
Precision pt is the percentage of the reconstructed points that lie within a certain
distance threshold t to the ground truth points and it is a measure of accuracy. On the
other hand recall rt measures the completeness of the reconstruction by calculating the
percentage of ground-truth points that lie within a certain distance threshold t to the
reconstructed points. Mathematically, this can be defined as:

F-Score @ t(Ppred, Pgt) :=
2 ∗ pt ∗ rt

pt + rt
(5.2)
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pt :=
1

|Ppred|
|{y : y ∈ Ppred, d(y, x̃) <= t}| (5.3)

rt :=
1

|Pgt|
|{x : x ∈ Pgt, d(x, ỹ) <= t}| (5.4)

d(p, q) := ||p − q||1 (5.5)

where x̃ = minr∈Pgt ||r − y||1 and ỹ = minr∈Ppred ||x − r||1 are the corresponding nearest
neighbours from the other set. By construction, higher value of this measure corre-
sponds to better reconstruction. We compute F-Score at t = 1 mm with 2.5M points
sampled from both ground-truth and reconstructed meshes.

5.3.3 Normal Consistency

While Chamfer-L1 distance and F-Score @ t consider the spatial position of the two
meshes, N.C. takes into account the orientation of the meshes. It is defined as the
average cosine of the angles between the normal vectors of adjacent points in the
predicted and ground-truth meshes. Mathematically,

N.C.(Ppred, Pgt) :=
1

|Pgt| ∑
x∈Pgt

cos(n(x), n(ỹ)) +
1

|Ppred| ∑
y∈Ppred

cos(n(y), n(x̃)) (5.6)

where ỹ = minr∈Ppred ||x − r||1, x̃ = minr∈Pgt ||r − y||1 and n(p) is the normal at point
p. As cosine attains maximum at 0 (i.e. two vectors are perfectly oriented in the same
direction), a higher value for N.C. corresponds to better reconstruction. We compute
N.C. with 2.5M points sampled from both ground-truth and reconstructed meshes.

5.4 Baselines

As briefly discussed in the Introduction (see Chapter 1) and Related Work (see Chapter
2), there are broadly three major lines of research in parametric head modeling namely
linear explicit models, neural implicit models and localized models. Considering these three
categories, we choose one approach from each group to compare with our results. The
chosen baselines are discussed below:

5.4.1 FLAME

FLAME [28] is one of the most recent and advanced linear explicit models which seam-
lessly incorporates articulated head components in linear shape spaces. It models
disjoint parametric spaces for shape (identity), expression, head pose, neck and jaw
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movements with separate PCA for each. However, as we only model identity and
expression, we compare our results with zero pose FLAME fittings without any head or
neck movement. As we already use same co-ordinate system (subject to a scale factor
of 4 as of NPHM [20]) as of FLAME, we can easily fit the point clouds to obtain the
FLAME parameters using the code from [87].

5.4.2 NPMs

NPMs [19], though originally introduced for full human body, is a recent simple neural
implicit model on top of which the proposed model is built. So, it is a natural choice for
a comparison baseline. Here, instead of tri-planes a big co-ordinate based MLP is used
like DeepSDF [17] and it is trained only with 3D losses without explicit density and
total variation regularization due to its inherent strong inductive bias. For more details
on similarity and difference of NPMs to our approach please see sec. 2.3.1.

5.4.3 NPHM

NPHM [20] is the most recent state-of-the-art in parametric head models and it falls
under both the categories of neural implicit models and localized models as it employs
ensemble of small local MLPs for the implicit shape representation. As we use same
data and co-ordinate system as of NPHM [20], we directly use their code from official
repository1 for generating comparison result. Although our proposed approach is not
directly a localized model, it is still comparable to NPHM as both use implicit model and
tri-plane representation of our approach can have indirect local effect. For more details
on approach comparison please see sec. 2.3.2.

1https://github.com/SimonGiebenhain/NPHM
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6 Results

In this chapter we will report the results of our proposed model and compare them
with the baselines and state-of-the-arts in this field. Additionally, we will show ablation
study to analyze the effects of different hyper-parameters and design choices.

6.1 Identity Space

This section describes the results of our proposed identity model. In particular we will
talk about inference reconstruction, latent interpolation and unconditional sampling of
face identities.

Table 6.1: Inference time identity fitting with partial point clouds obtained from single
view depth maps. The metrics are separately computed for both only face
region and full head region. We compare our method to widely-used state-of-
the-art parametric head models including FLAME [28], NPM [19] and NPHM
[20]. Our model performs significantly better at constructing overall head
geometry including hair regions.

Method
L1-Chamfer ↓ N.C. ↑ F-Score @ 1 mm ↑

face head face head face head

FLAME [28] 0.643 5.829 0.975 0.894 0.998 0.636
NPM [19] 0.451 2.037 0.991 0.897 0.999 0.901
NPHM [20] 0.320 1.360 0.994 0.924 1.000 0.957
Ours 0.359 0.820 0.993 0.948 1.000 0.989

6.1.1 Reconstruction

Reconstruction at the inference time refers to the idea of fitting (see sec. 4.4) a partial
depth observation to our identity model i.e obtaining the full 3D face shape of the
corresponding person. Fig 6.1 and Table 6.1 jointly show our identity reconstruction
results at inference time. As compared to baselines and state-of-the-arts, clearly our
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Input FLAME [28] NPM [19] NPHM [20] Ours GT Scan

Figure 6.1: Identity fitting comparison. At inference time we fit partial point clouds
obtained from single view depth maps to reconstruct full head geometry.
We compare our method to widely-used state-of-the-art parametric head
models including FLAME [28], NPM [19] and NPHM [20]. Our proposed
approach is able to capture more high frequency surface details especially
in the hair regions.
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model is able to capture significantly more detailed geometry in the overall head
region while slightly compromising in the face region. Also, from Table 6.2 we can see
mesh extraction from our approach is significantly faster from other approaches due to
convolution based tri-plane hybrid representation instead of big MLPs.

Table 6.2: Given an identity latent code zid, we compare the mesh extraction time
(at 256 grid resolution) of our method with other two implicit parametric
models NPM [19] and NPHM [20]. Our approach is significantly faster due
to convolution based tri-plane hybrid representation and small MLPs.

Method Time (Sec.)

NPM [19] 18.319
NPHM [20] 33.119
Ours 03.717

6.1.2 Latent Interpolation

Let, zid1 , zid2 ∈ Rdid are two latent codes representing two identities. Now, for an
α ∈ [0, 1], linear interpolation between the latent codes can be defined as:

zidi := αzid1 + (1 − α)zid2 (6.1)

By varying α from 0 to 1, we can get several intermediate latent codes. Now, if the
learnt latent space is smooth, theses intermediate codes will produce shapes which
smoothly transitions from source to target shape. We can see this effect in Fig 6.2
confirming that our identity latent space is smooth.

Figure 6.2: Interpolation in identity latent space. Smooth transition from source
(extreme-left) to target (extreme-right) shapes shows the smoothness of
the latent space of the proposed identity model.
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Figure 6.3: Unconditional samples generated from the our identity model latent space.

41



6 Results

6.1.3 Unconditional Sampling

As we model our identity latent space from Gaussian distribution, at inference time
new latent codes can easily be sampled from N (µ, Σ) where µ ∈ Rdid and Σ ∈ Rdid×did

are the learned mean and co-variance respectively of the identity latent codes from
training set. Such newly sampled latent codes can be used to generate new shape
identities unconditionally. We show some of such unconditional samples in Fig 6.3.

6.2 Expression Space

In this section we will discuss the results of our expression model in terms of inference
time fitting or reconstruction and latent interpolation between different expressions.

Table 6.3: Inference time expression fitting with partial point clouds obtained from
single view depth maps. The metrics are separately computed for both only
face region and full head region. We compare our method to widely-used
state-of-the-art parametric head models including FLAME [28], NPM [19]
and NPHM [20].

Method
L1-Chamfer ↓ N.C. ↑ F-Score @ 1 mm ↑

face head face head face head

FLAME [28] 0.769 6.016 0.972 0.882 0.999 0.636
NPM [19] 0.416 1.659 0.988 0.888 1.000 0.934
NPHM [20] 0.368 1.313 0.991 0.909 1.000 0.965
Ours 0.650 1.179 0.981 0.915 0.998 0.984

6.2.1 Reconstruction

Table 6.3 and Fig 6.4 show the inference time reconstruction results of our expression
space. Like identity model here also our approach consistently performs better while
the metrics are calculated on full head region. However, when metrics are calculated
only in the facial region we observe a drop in the performance. This could probably
be explained by the fact that we do not use GAN loss based regularization on the
deformations and thus unregularized deformation field sometimes over deforms the
facial region obtained from nicely regularized identity model, thereby badly affecting
the evaluation metrics.

42



6 Results

Input FLAME [28] NPM [19] NPHM [20] Ours GT Scan

Figure 6.4: Expression fitting comparison. At inference time we jointly optimize for
identity and expression latent codes while fitting partial point clouds ob-
tained from single view depth maps to reconstruct full head geometry. We
compare our method to widely-used state-of-the-art parametric head models
including FLAME [28], NPM [19] and NPHM [20].

Figure 6.5: Interpolation in expression latent space. Smooth transition from source
(extreme-left) to target (extreme-right) shapes shows the smoothness of the
latent space of the proposed expression (deformation) model.
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6.2.2 Latent Interpolation

This idea is quite similar to identity interpolation (see sec. 6.1.2). However, as expression
can not exist without a base identity (or in other words deformation filed can not work
without a base shape), we keep a base identity code fixed and interpolate over two
expression latent codes. Fig 6.5 shows this interpolation result as a smooth transition
between two expressions on a single identity which confirms the smoothness of our
expression deformation field.

6.3 Ablation Study

We perform ablation study to determine the effects of different design choices for the
proposed parametric head model. As our primary focus is modeling identity, we ablate
only in the identity space keeping the expression neutral.

6.3.1 Ablation Setup

We start with a NPM [19] baseline and gradually increase complexity either by changing
the architecture or adding more loss terms as described below:

• NPM: Same big MLP architecture for Fid as of [19], trained with only Lss, Lsn,
Leik and Lnsp.

• TP_3D: Fid network is implemented with tri-plane representation, all other things
remain unchanged.

• TP_3D_reg: Ledr, Ltv and Ltp loss terms are added to regularize the tri-planes.

• TP_2D_reg: Here, we introduce the renderer R and discriminator D and train
the model with only Lnmr, Lg, Ld, Ledr, Ltv and Ltp without any direct 3D
supervision.

• Full model: Finally, here we activate all the loss terms as listed in Table 4.1 along
with the tri-plane based architecture.

6.3.2 Ablation Results

Figure 6.6 and Table 6.4 show the ablation results. Just replacing the big MLP in NPM
[19] with tri-plane representation can capture more surface details especially in the
hairs. However, if not regularized, it also creates random artifacts in the surrounding.
Attempt of regularizing it with traditional density and weight norm based approaches
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NPM [19] TP_3D TP_3D_reg TP_2D_reg Full model GT Scan

Figure 6.6: Identity fitting ablation results. Tri-plane (TP) representation is able to
capture more details, but creates extra artifacts without regularization.
While traditional 3D or 2D regularization produces over-smooth results,
proposed GAN based 2D regularization along with 3D losses preserves high
frequency details without creating any random artifacts.

produce over-smooth results. On the other hand, training only with 2D losses on the
rendered normal maps can roughly reconstruct the shapes, however it still misses the
fine surface details probably due to small resolution of the normal maps. Finally, the
proposed approach which incorporates both 3D and 2D losses can reconstruct the
surface details without creating random artifacts. The 3D losses help the model to learn
more detail geometry where as the 2D adversarial losses act as an adaptive regularizer
to constrain the latent space to avoid random artifacts.

6.4 Applications

Parametric head models can have a multitude of applications starting from 3D face
tracking [88–91], face reenactment [92–94], voice puppetry [93, 95] and so on. We
explore below one such application namely expression transfer which forms the basis of
face reenactment and voice puppetry.

6.4.1 Expression Transfer

Here, the high level idea is to transfer the facial expression of a person to the face
of another person. To this end, we fit two depth scans of two different person in
different facial expressions to obtain corresponding identity and expression codes
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Table 6.4: Effects of different losses and architectures on identity model. Results are
calculated on the entire head region for fitting identities in neutral expression.
Partial pointclouds are obtained by back-projecting random view near-frontal
renderings.

Method L1-Chamfer ↓ N.C. ↑ F-Score @ 1 mm ↑

NPM [19] 1.361 0.924 0.957
TP_3D 17.226 0.869 0.642
TP_3D_reg 3.150 0.857 0.791
TP_2D_reg 3.785 0.866 0.747
Full model 0.819 0.948 0.989

(z(1)id , z(1)ex ) and (z(2)id , z(2)ex ). Now, as the identity and expression latent spaces are disjoint

by construction, we can simply swap the expression codes z(1)ex and z(2)ex and query
the networks with (z(1)id , z(2)ex ) and (z(2)id , z(1)ex ) to transfer the facial expression from the
first person to the second person and vice versa. Fig 6.7 shows the expression transfer
result. The expression code obtained from the source (left column) is used to deform
the neutral targets (middle column) to the source expression pose. In the right column
we show the result of the expression transfer.

expression source neutral targets posed targets

Figure 6.7: Expression transfer: left most column shows the source expression that
needs to be transferred to the neutral pose identities in the middle column.
Rightmost column shows the result of expression transfer.
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7 Conclusion

In this thesis we present a neural parametric head model trained with 2D GAN losses
along side the existing 3D losses. Our tri-plane based hybrid shape representation is
able to nicely capture high frequency surface details when 2D GAN loss based adaptive
regularization is imposed. In other words, our 3D losses help the model to learn
high-frequency surface details whereas the 2D GAN loss puts the necessary guardrails
to restrict the model falling into bad local minima and generate random artifacts. Both
of our identity and expression models generates smooth latent spaces as observed from
the latent interpolation experiments. Our identity model also runs faster as compared
to other implicit models due to convolution based tri-plane representation instead of
big MLPs.

However, as of now, the expression deformation model is not regularized with GANs
and that results in occasional over deformation to the extent that can destroy the facial
structures. Additionally, the rendering resolution for the GAN loss is a limiting factor
as the current per-pixel ray shooting implementation of the volume renderer grows
in quadratic order of the resolution. These two issues could probably be taken up in
future directions of research on this. Also, instead of GAN based regularization on
the 2D renderings, the latent codes could probably be directly refined using recent
state-of-the-art denoising diffusion models to obtain more robust parametric head
models.
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Abbreviations

TUM Technical University of Munich

3DMM 3D Morphable Models

PCA Principal Component Analysis

NPFM Neural Parametric Face Models

MLP Multi Layer Perceptron

SDF Signed Distance Field

OF Occupancy Field

GAN Generative Adversarial Network

CNN Convolutional Neural Network

DNN Deep Neural Network

WGAN Wasserstein GAN

NeRF Neural Radiance Field

TV Total Variation

N.C. Normal Consistency
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